Aromātai
-\frac{14}{5}=-2.8
Tauwehe
-\frac{14}{5} = -2\frac{4}{5} = -2.8
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{5+4}{5}-\frac{3\times 8+3}{8}}{\left(-\frac{3}{4}\right)^{2}}
Whakareatia te 1 ki te 5, ka 5.
\frac{\frac{9}{5}-\frac{3\times 8+3}{8}}{\left(-\frac{3}{4}\right)^{2}}
Tāpirihia te 5 ki te 4, ka 9.
\frac{\frac{9}{5}-\frac{24+3}{8}}{\left(-\frac{3}{4}\right)^{2}}
Whakareatia te 3 ki te 8, ka 24.
\frac{\frac{9}{5}-\frac{27}{8}}{\left(-\frac{3}{4}\right)^{2}}
Tāpirihia te 24 ki te 3, ka 27.
\frac{\frac{72}{40}-\frac{135}{40}}{\left(-\frac{3}{4}\right)^{2}}
Ko te maha noa iti rawa atu o 5 me 8 ko 40. Me tahuri \frac{9}{5} me \frac{27}{8} ki te hautau me te tautūnga 40.
\frac{\frac{72-135}{40}}{\left(-\frac{3}{4}\right)^{2}}
Tā te mea he rite te tauraro o \frac{72}{40} me \frac{135}{40}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{63}{40}}{\left(-\frac{3}{4}\right)^{2}}
Tangohia te 135 i te 72, ka -63.
\frac{-\frac{63}{40}}{\frac{9}{16}}
Tātaihia te -\frac{3}{4} mā te pū o 2, kia riro ko \frac{9}{16}.
-\frac{63}{40}\times \frac{16}{9}
Whakawehe -\frac{63}{40} ki te \frac{9}{16} mā te whakarea -\frac{63}{40} ki te tau huripoki o \frac{9}{16}.
\frac{-63\times 16}{40\times 9}
Me whakarea te -\frac{63}{40} ki te \frac{16}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-1008}{360}
Mahia ngā whakarea i roto i te hautanga \frac{-63\times 16}{40\times 9}.
-\frac{14}{5}
Whakahekea te hautanga \frac{-1008}{360} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 72.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}