Aromātai
\frac{60}{59}\approx 1.016949153
Tauwehe
\frac{2 ^ {2} \cdot 3 \cdot 5}{59} = 1\frac{1}{59} = 1.0169491525423728
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{3+2}{3}+\frac{4\times 2+1}{2}+\frac{2\times 6+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Whakareatia te 1 ki te 3, ka 3.
\frac{\frac{5}{3}+\frac{4\times 2+1}{2}+\frac{2\times 6+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Tāpirihia te 3 ki te 2, ka 5.
\frac{\frac{5}{3}+\frac{8+1}{2}+\frac{2\times 6+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Whakareatia te 4 ki te 2, ka 8.
\frac{\frac{5}{3}+\frac{9}{2}+\frac{2\times 6+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Tāpirihia te 8 ki te 1, ka 9.
\frac{\frac{10}{6}+\frac{27}{6}+\frac{2\times 6+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{5}{3} me \frac{9}{2} ki te hautau me te tautūnga 6.
\frac{\frac{10+27}{6}+\frac{2\times 6+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Tā te mea he rite te tauraro o \frac{10}{6} me \frac{27}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{37}{6}+\frac{2\times 6+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Tāpirihia te 10 ki te 27, ka 37.
\frac{\frac{37}{6}+\frac{12+5}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Whakareatia te 2 ki te 6, ka 12.
\frac{\frac{37}{6}+\frac{17}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Tāpirihia te 12 ki te 5, ka 17.
\frac{\frac{37+17}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Tā te mea he rite te tauraro o \frac{37}{6} me \frac{17}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{54}{6}}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Tāpirihia te 37 ki te 17, ka 54.
\frac{9}{\frac{4\times 10+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Whakawehea te 54 ki te 6, kia riro ko 9.
\frac{9}{\frac{40+3}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Whakareatia te 4 ki te 10, ka 40.
\frac{9}{\frac{43}{10}+\frac{3\times 5+1}{5}+\frac{1\times 20+7}{20}}
Tāpirihia te 40 ki te 3, ka 43.
\frac{9}{\frac{43}{10}+\frac{15+1}{5}+\frac{1\times 20+7}{20}}
Whakareatia te 3 ki te 5, ka 15.
\frac{9}{\frac{43}{10}+\frac{16}{5}+\frac{1\times 20+7}{20}}
Tāpirihia te 15 ki te 1, ka 16.
\frac{9}{\frac{43}{10}+\frac{32}{10}+\frac{1\times 20+7}{20}}
Ko te maha noa iti rawa atu o 10 me 5 ko 10. Me tahuri \frac{43}{10} me \frac{16}{5} ki te hautau me te tautūnga 10.
\frac{9}{\frac{43+32}{10}+\frac{1\times 20+7}{20}}
Tā te mea he rite te tauraro o \frac{43}{10} me \frac{32}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9}{\frac{75}{10}+\frac{1\times 20+7}{20}}
Tāpirihia te 43 ki te 32, ka 75.
\frac{9}{\frac{15}{2}+\frac{1\times 20+7}{20}}
Whakahekea te hautanga \frac{75}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{9}{\frac{15}{2}+\frac{20+7}{20}}
Whakareatia te 1 ki te 20, ka 20.
\frac{9}{\frac{15}{2}+\frac{27}{20}}
Tāpirihia te 20 ki te 7, ka 27.
\frac{9}{\frac{150}{20}+\frac{27}{20}}
Ko te maha noa iti rawa atu o 2 me 20 ko 20. Me tahuri \frac{15}{2} me \frac{27}{20} ki te hautau me te tautūnga 20.
\frac{9}{\frac{150+27}{20}}
Tā te mea he rite te tauraro o \frac{150}{20} me \frac{27}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9}{\frac{177}{20}}
Tāpirihia te 150 ki te 27, ka 177.
9\times \frac{20}{177}
Whakawehe 9 ki te \frac{177}{20} mā te whakarea 9 ki te tau huripoki o \frac{177}{20}.
\frac{9\times 20}{177}
Tuhia te 9\times \frac{20}{177} hei hautanga kotahi.
\frac{180}{177}
Whakareatia te 9 ki te 20, ka 180.
\frac{60}{59}
Whakahekea te hautanga \frac{180}{177} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}