Whakaoti mō t
t=-6
t=5
Tohaina
Kua tāruatia ki te papatopenga
16t^{2}+16t=480
Whakareatia te \frac{1}{2} ki te 32, ka 16.
16t^{2}+16t-480=0
Tangohia te 480 mai i ngā taha e rua.
t^{2}+t-30=0
Whakawehea ngā taha e rua ki te 16.
a+b=1 ab=1\left(-30\right)=-30
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei t^{2}+at+bt-30. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,30 -2,15 -3,10 -5,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Tātaihia te tapeke mō ia takirua.
a=-5 b=6
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(t^{2}-5t\right)+\left(6t-30\right)
Tuhia anō te t^{2}+t-30 hei \left(t^{2}-5t\right)+\left(6t-30\right).
t\left(t-5\right)+6\left(t-5\right)
Tauwehea te t i te tuatahi me te 6 i te rōpū tuarua.
\left(t-5\right)\left(t+6\right)
Whakatauwehea atu te kīanga pātahi t-5 mā te whakamahi i te āhuatanga tātai tohatoha.
t=5 t=-6
Hei kimi otinga whārite, me whakaoti te t-5=0 me te t+6=0.
16t^{2}+16t=480
Whakareatia te \frac{1}{2} ki te 32, ka 16.
16t^{2}+16t-480=0
Tangohia te 480 mai i ngā taha e rua.
t=\frac{-16±\sqrt{16^{2}-4\times 16\left(-480\right)}}{2\times 16}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 16 mō a, 16 mō b, me -480 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-16±\sqrt{256-4\times 16\left(-480\right)}}{2\times 16}
Pūrua 16.
t=\frac{-16±\sqrt{256-64\left(-480\right)}}{2\times 16}
Whakareatia -4 ki te 16.
t=\frac{-16±\sqrt{256+30720}}{2\times 16}
Whakareatia -64 ki te -480.
t=\frac{-16±\sqrt{30976}}{2\times 16}
Tāpiri 256 ki te 30720.
t=\frac{-16±176}{2\times 16}
Tuhia te pūtakerua o te 30976.
t=\frac{-16±176}{32}
Whakareatia 2 ki te 16.
t=\frac{160}{32}
Nā, me whakaoti te whārite t=\frac{-16±176}{32} ina he tāpiri te ±. Tāpiri -16 ki te 176.
t=5
Whakawehe 160 ki te 32.
t=-\frac{192}{32}
Nā, me whakaoti te whārite t=\frac{-16±176}{32} ina he tango te ±. Tango 176 mai i -16.
t=-6
Whakawehe -192 ki te 32.
t=5 t=-6
Kua oti te whārite te whakatau.
16t^{2}+16t=480
Whakareatia te \frac{1}{2} ki te 32, ka 16.
\frac{16t^{2}+16t}{16}=\frac{480}{16}
Whakawehea ngā taha e rua ki te 16.
t^{2}+\frac{16}{16}t=\frac{480}{16}
Mā te whakawehe ki te 16 ka wetekia te whakareanga ki te 16.
t^{2}+t=\frac{480}{16}
Whakawehe 16 ki te 16.
t^{2}+t=30
Whakawehe 480 ki te 16.
t^{2}+t+\left(\frac{1}{2}\right)^{2}=30+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+t+\frac{1}{4}=30+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}+t+\frac{1}{4}=\frac{121}{4}
Tāpiri 30 ki te \frac{1}{4}.
\left(t+\frac{1}{2}\right)^{2}=\frac{121}{4}
Tauwehea t^{2}+t+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+\frac{1}{2}=\frac{11}{2} t+\frac{1}{2}=-\frac{11}{2}
Whakarūnātia.
t=5 t=-6
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}