Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

100t^{2}=10
Whakareatia te \frac{1}{2} ki te 200, ka 100.
t^{2}=\frac{10}{100}
Whakawehea ngā taha e rua ki te 100.
t^{2}=\frac{1}{10}
Whakahekea te hautanga \frac{10}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
t=\frac{\sqrt{10}}{10} t=-\frac{\sqrt{10}}{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
100t^{2}=10
Whakareatia te \frac{1}{2} ki te 200, ka 100.
100t^{2}-10=0
Tangohia te 10 mai i ngā taha e rua.
t=\frac{0±\sqrt{0^{2}-4\times 100\left(-10\right)}}{2\times 100}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 100 mō a, 0 mō b, me -10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 100\left(-10\right)}}{2\times 100}
Pūrua 0.
t=\frac{0±\sqrt{-400\left(-10\right)}}{2\times 100}
Whakareatia -4 ki te 100.
t=\frac{0±\sqrt{4000}}{2\times 100}
Whakareatia -400 ki te -10.
t=\frac{0±20\sqrt{10}}{2\times 100}
Tuhia te pūtakerua o te 4000.
t=\frac{0±20\sqrt{10}}{200}
Whakareatia 2 ki te 100.
t=\frac{\sqrt{10}}{10}
Nā, me whakaoti te whārite t=\frac{0±20\sqrt{10}}{200} ina he tāpiri te ±.
t=-\frac{\sqrt{10}}{10}
Nā, me whakaoti te whārite t=\frac{0±20\sqrt{10}}{200} ina he tango te ±.
t=\frac{\sqrt{10}}{10} t=-\frac{\sqrt{10}}{10}
Kua oti te whārite te whakatau.