Whakaoti mō t
t=\frac{\sqrt{10}}{10}\approx 0.316227766
t=-\frac{\sqrt{10}}{10}\approx -0.316227766
Tohaina
Kua tāruatia ki te papatopenga
100t^{2}=10
Whakareatia te \frac{1}{2} ki te 200, ka 100.
t^{2}=\frac{10}{100}
Whakawehea ngā taha e rua ki te 100.
t^{2}=\frac{1}{10}
Whakahekea te hautanga \frac{10}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
t=\frac{\sqrt{10}}{10} t=-\frac{\sqrt{10}}{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
100t^{2}=10
Whakareatia te \frac{1}{2} ki te 200, ka 100.
100t^{2}-10=0
Tangohia te 10 mai i ngā taha e rua.
t=\frac{0±\sqrt{0^{2}-4\times 100\left(-10\right)}}{2\times 100}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 100 mō a, 0 mō b, me -10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 100\left(-10\right)}}{2\times 100}
Pūrua 0.
t=\frac{0±\sqrt{-400\left(-10\right)}}{2\times 100}
Whakareatia -4 ki te 100.
t=\frac{0±\sqrt{4000}}{2\times 100}
Whakareatia -400 ki te -10.
t=\frac{0±20\sqrt{10}}{2\times 100}
Tuhia te pūtakerua o te 4000.
t=\frac{0±20\sqrt{10}}{200}
Whakareatia 2 ki te 100.
t=\frac{\sqrt{10}}{10}
Nā, me whakaoti te whārite t=\frac{0±20\sqrt{10}}{200} ina he tāpiri te ±.
t=-\frac{\sqrt{10}}{10}
Nā, me whakaoti te whārite t=\frac{0±20\sqrt{10}}{200} ina he tango te ±.
t=\frac{\sqrt{10}}{10} t=-\frac{\sqrt{10}}{10}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}