( 1 + y ^ { 2 } ) d x = ( \tan ^ { - 1 } y - x ) d y
Whakaoti mō d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=\frac{y\arctan(y)}{y^{2}+y+1}\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}\\x=\frac{y\arctan(y)}{y^{2}+y+1}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(d+y^{2}d\right)x=\left(\arctan(y)-x\right)dy
Whakamahia te āhuatanga tohatoha hei whakarea te 1+y^{2} ki te d.
dx+y^{2}dx=\left(\arctan(y)-x\right)dy
Whakamahia te āhuatanga tohatoha hei whakarea te d+y^{2}d ki te x.
dx+y^{2}dx=\left(\arctan(y)d-xd\right)y
Whakamahia te āhuatanga tohatoha hei whakarea te \arctan(y)-x ki te d.
dx+y^{2}dx=\arctan(y)dy-xdy
Whakamahia te āhuatanga tohatoha hei whakarea te \arctan(y)d-xd ki te y.
dx+y^{2}dx-\arctan(y)dy=-xdy
Tangohia te \arctan(y)dy mai i ngā taha e rua.
dx+y^{2}dx-\arctan(y)dy+xdy=0
Me tāpiri te xdy ki ngā taha e rua.
-dy\arctan(y)+dxy^{2}+dxy+dx=0
Whakaraupapatia anō ngā kīanga tau.
\left(-y\arctan(y)+xy^{2}+xy+x\right)d=0
Pahekotia ngā kīanga tau katoa e whai ana i te d.
d=0
Whakawehe 0 ki te -y\arctan(y)+xy^{2}+xy+x.
\left(d+y^{2}d\right)x=\left(\arctan(y)-x\right)dy
Whakamahia te āhuatanga tohatoha hei whakarea te 1+y^{2} ki te d.
dx+y^{2}dx=\left(\arctan(y)-x\right)dy
Whakamahia te āhuatanga tohatoha hei whakarea te d+y^{2}d ki te x.
dx+y^{2}dx=\left(\arctan(y)d-xd\right)y
Whakamahia te āhuatanga tohatoha hei whakarea te \arctan(y)-x ki te d.
dx+y^{2}dx=\arctan(y)dy-xdy
Whakamahia te āhuatanga tohatoha hei whakarea te \arctan(y)d-xd ki te y.
dx+y^{2}dx+xdy=\arctan(y)dy
Me tāpiri te xdy ki ngā taha e rua.
\left(d+y^{2}d+dy\right)x=\arctan(y)dy
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(dy^{2}+dy+d\right)x=dy\arctan(y)
He hanga arowhānui tō te whārite.
\frac{\left(dy^{2}+dy+d\right)x}{dy^{2}+dy+d}=\frac{dy\arctan(y)}{dy^{2}+dy+d}
Whakawehea ngā taha e rua ki te d+y^{2}d+dy.
x=\frac{dy\arctan(y)}{dy^{2}+dy+d}
Mā te whakawehe ki te d+y^{2}d+dy ka wetekia te whakareanga ki te d+y^{2}d+dy.
x=\frac{y\arctan(y)}{y^{2}+y+1}
Whakawehe \arctan(y)dy ki te d+y^{2}d+dy.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}