Tīpoka ki ngā ihirangi matua
Whakaoti mō d
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Tohaina

\left(d+y^{2}d\right)x=\left(\arctan(y)-x\right)dy
Whakamahia te āhuatanga tohatoha hei whakarea te 1+y^{2} ki te d.
dx+y^{2}dx=\left(\arctan(y)-x\right)dy
Whakamahia te āhuatanga tohatoha hei whakarea te d+y^{2}d ki te x.
dx+y^{2}dx=\left(\arctan(y)d-xd\right)y
Whakamahia te āhuatanga tohatoha hei whakarea te \arctan(y)-x ki te d.
dx+y^{2}dx=\arctan(y)dy-xdy
Whakamahia te āhuatanga tohatoha hei whakarea te \arctan(y)d-xd ki te y.
dx+y^{2}dx-\arctan(y)dy=-xdy
Tangohia te \arctan(y)dy mai i ngā taha e rua.
dx+y^{2}dx-\arctan(y)dy+xdy=0
Me tāpiri te xdy ki ngā taha e rua.
-dy\arctan(y)+dxy^{2}+dxy+dx=0
Whakaraupapatia anō ngā kīanga tau.
\left(-y\arctan(y)+xy^{2}+xy+x\right)d=0
Pahekotia ngā kīanga tau katoa e whai ana i te d.
d=0
Whakawehe 0 ki te -y\arctan(y)+xy^{2}+xy+x.
\left(d+y^{2}d\right)x=\left(\arctan(y)-x\right)dy
Whakamahia te āhuatanga tohatoha hei whakarea te 1+y^{2} ki te d.
dx+y^{2}dx=\left(\arctan(y)-x\right)dy
Whakamahia te āhuatanga tohatoha hei whakarea te d+y^{2}d ki te x.
dx+y^{2}dx=\left(\arctan(y)d-xd\right)y
Whakamahia te āhuatanga tohatoha hei whakarea te \arctan(y)-x ki te d.
dx+y^{2}dx=\arctan(y)dy-xdy
Whakamahia te āhuatanga tohatoha hei whakarea te \arctan(y)d-xd ki te y.
dx+y^{2}dx+xdy=\arctan(y)dy
Me tāpiri te xdy ki ngā taha e rua.
\left(d+y^{2}d+dy\right)x=\arctan(y)dy
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(dy^{2}+dy+d\right)x=dy\arctan(y)
He hanga arowhānui tō te whārite.
\frac{\left(dy^{2}+dy+d\right)x}{dy^{2}+dy+d}=\frac{dy\arctan(y)}{dy^{2}+dy+d}
Whakawehea ngā taha e rua ki te d+y^{2}d+dy.
x=\frac{dy\arctan(y)}{dy^{2}+dy+d}
Mā te whakawehe ki te d+y^{2}d+dy ka wetekia te whakareanga ki te d+y^{2}d+dy.
x=\frac{y\arctan(y)}{y^{2}+y+1}
Whakawehe \arctan(y)dy ki te d+y^{2}d+dy.