Whakaoti mō z
z=-3
Tohaina
Kua tāruatia ki te papatopenga
\left(1+i\right)z=2-3i-5
Tangohia te 5 mai i ngā taha e rua.
\left(1+i\right)z=2-5-3i
Tangohia te 5 i te 2-3i mā te tango i ngā wāhi tūturu me ngā wāhi pohewa hāngai.
\left(1+i\right)z=-3-3i
Tangohia te 5 i te 2, ka -3.
z=\frac{-3-3i}{1+i}
Whakawehea ngā taha e rua ki te 1+i.
z=\frac{\left(-3-3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Me whakarea te taurunga me te tauraro o \frac{-3-3i}{1+i} ki te haumi hiato o te tauraro, 1-i.
z=\frac{\left(-3-3i\right)\left(1-i\right)}{1^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(-3-3i\right)\left(1-i\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
z=\frac{-3-3\left(-i\right)-3i-3\left(-1\right)i^{2}}{2}
Me whakarea ngā tau matatini -3-3i me 1-i pēnā i te whakarea huarua.
z=\frac{-3-3\left(-i\right)-3i-3\left(-1\right)\left(-1\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1.
z=\frac{-3+3i-3i-3}{2}
Mahia ngā whakarea i roto o -3-3\left(-i\right)-3i-3\left(-1\right)\left(-1\right).
z=\frac{-3-3+\left(3-3\right)i}{2}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -3+3i-3i-3.
z=\frac{-6}{2}
Mahia ngā tāpiri i roto o -3-3+\left(3-3\right)i.
z=-3
Whakawehea te -6 ki te 2, kia riro ko -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}