Aromātai
-13+13i
Wāhi Tūturu
-13
Tohaina
Kua tāruatia ki te papatopenga
1\times 2+1\times \left(3i\right)+5i\times 2+5\times 3i^{2}
Me whakarea ngā tau matatini 1+5i me 2+3i pēnā i te whakarea huarua.
1\times 2+1\times \left(3i\right)+5i\times 2+5\times 3\left(-1\right)
Hei tōna tikanga, ko te i^{2} ko -1.
2+3i+10i-15
Mahia ngā whakarea.
2-15+\left(3+10\right)i
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa.
-13+13i
Mahia ngā tāpiri.
Re(1\times 2+1\times \left(3i\right)+5i\times 2+5\times 3i^{2})
Me whakarea ngā tau matatini 1+5i me 2+3i pēnā i te whakarea huarua.
Re(1\times 2+1\times \left(3i\right)+5i\times 2+5\times 3\left(-1\right))
Hei tōna tikanga, ko te i^{2} ko -1.
Re(2+3i+10i-15)
Mahia ngā whakarea i roto o 1\times 2+1\times \left(3i\right)+5i\times 2+5\times 3\left(-1\right).
Re(2-15+\left(3+10\right)i)
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 2+3i+10i-15.
Re(-13+13i)
Mahia ngā tāpiri i roto o 2-15+\left(3+10\right)i.
-13
Ko te wāhi tūturu o -13+13i ko -13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}