Whakaoti mō a
a=-2+i-ib
Whakaoti mō b
b=ia+\left(1+2i\right)
Tohaina
Kua tāruatia ki te papatopenga
-3+4i=\left(a+bi\right)\left(2-i\right)
Tātaihia te 1+2i mā te pū o 2, kia riro ko -3+4i.
-3+4i=\left(2-i\right)a+\left(2-i\right)bi
Whakamahia te āhuatanga tohatoha hei whakarea te a+bi ki te 2-i.
-3+4i=\left(2-i\right)a+\left(1+2i\right)b
Whakareatia te 2-i ki te i, ka 1+2i.
\left(2-i\right)a+\left(1+2i\right)b=-3+4i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(2-i\right)a=-3+4i-\left(1+2i\right)b
Tangohia te \left(1+2i\right)b mai i ngā taha e rua.
\left(2-i\right)a=-3+4i+\left(-1-2i\right)b
Whakareatia te -1 ki te 1+2i, ka -1-2i.
\left(2-i\right)a=\left(-1-2i\right)b+\left(-3+4i\right)
He hanga arowhānui tō te whārite.
\frac{\left(2-i\right)a}{2-i}=\frac{\left(-1-2i\right)b+\left(-3+4i\right)}{2-i}
Whakawehea ngā taha e rua ki te 2-i.
a=\frac{\left(-1-2i\right)b+\left(-3+4i\right)}{2-i}
Mā te whakawehe ki te 2-i ka wetekia te whakareanga ki te 2-i.
a=-2+i-ib
Whakawehe -3+4i+\left(-1-2i\right)b ki te 2-i.
-3+4i=\left(a+bi\right)\left(2-i\right)
Tātaihia te 1+2i mā te pū o 2, kia riro ko -3+4i.
-3+4i=\left(2-i\right)a+\left(2-i\right)bi
Whakamahia te āhuatanga tohatoha hei whakarea te a+bi ki te 2-i.
-3+4i=\left(2-i\right)a+\left(1+2i\right)b
Whakareatia te 2-i ki te i, ka 1+2i.
\left(2-i\right)a+\left(1+2i\right)b=-3+4i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(1+2i\right)b=-3+4i-\left(2-i\right)a
Tangohia te \left(2-i\right)a mai i ngā taha e rua.
\left(1+2i\right)b=-3+4i+\left(-2+i\right)a
Whakareatia te -1 ki te 2-i, ka -2+i.
\left(1+2i\right)b=\left(-2+i\right)a+\left(-3+4i\right)
He hanga arowhānui tō te whārite.
\frac{\left(1+2i\right)b}{1+2i}=\frac{\left(-2+i\right)a+\left(-3+4i\right)}{1+2i}
Whakawehea ngā taha e rua ki te 1+2i.
b=\frac{\left(-2+i\right)a+\left(-3+4i\right)}{1+2i}
Mā te whakawehe ki te 1+2i ka wetekia te whakareanga ki te 1+2i.
b=ia+\left(1+2i\right)
Whakawehe -3+4i+\left(-2+i\right)a ki te 1+2i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}