Whakaoti mō α
\alpha =1
Tohaina
Kua tāruatia ki te papatopenga
\left(2+\alpha \right)^{3}=27
Tāpirihia te 1 ki te 1, ka 2.
8+12\alpha +6\alpha ^{2}+\alpha ^{3}=27
Whakamahia te ture huarua \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} hei whakaroha \left(2+\alpha \right)^{3}.
8+12\alpha +6\alpha ^{2}+\alpha ^{3}-27=0
Tangohia te 27 mai i ngā taha e rua.
-19+12\alpha +6\alpha ^{2}+\alpha ^{3}=0
Tangohia te 27 i te 8, ka -19.
\alpha ^{3}+6\alpha ^{2}+12\alpha -19=0
Hurinahatia te whārite ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
±19,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -19, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
\alpha =1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
\alpha ^{2}+7\alpha +19=0
Mā te whakatakotoranga Tauwehe, he tauwehe te \alpha -k o te pūrau mō ia pūtake k. Whakawehea te \alpha ^{3}+6\alpha ^{2}+12\alpha -19 ki te \alpha -1, kia riro ko \alpha ^{2}+7\alpha +19. Whakaotihia te whārite ina ōrite te hua ki te 0.
\alpha =\frac{-7±\sqrt{7^{2}-4\times 1\times 19}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 7 mō te b, me te 19 mō te c i te ture pūrua.
\alpha =\frac{-7±\sqrt{-27}}{2}
Mahia ngā tātaitai.
\alpha \in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
\alpha =1
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}