Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b\sqrt{2}=\left(1+\sqrt{2}\right)^{4}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a=\left(1+\sqrt{2}\right)^{4}-b\sqrt{2}
Tangohia te b\sqrt{2} mai i ngā taha e rua.
a=-\sqrt{2}b+\left(\sqrt{2}+1\right)^{4}
Whakaraupapatia anō ngā kīanga tau.
a+b\sqrt{2}=\left(1+\sqrt{2}\right)^{4}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
b\sqrt{2}=\left(1+\sqrt{2}\right)^{4}-a
Tangohia te a mai i ngā taha e rua.
\sqrt{2}b=-a+\left(\sqrt{2}+1\right)^{4}
He hanga arowhānui tō te whārite.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{-a+12\sqrt{2}+17}{\sqrt{2}}
Whakawehea ngā taha e rua ki te \sqrt{2}.
b=\frac{-a+12\sqrt{2}+17}{\sqrt{2}}
Mā te whakawehe ki te \sqrt{2} ka wetekia te whakareanga ki te \sqrt{2}.
b=\frac{\sqrt{2}\left(-a+12\sqrt{2}+17\right)}{2}
Whakawehe 17+12\sqrt{2}-a ki te \sqrt{2}.