Whakaoti mō a
a=\sqrt{2}\left(12-b\right)+17
Whakaoti mō b
b=-\frac{\sqrt{2}\left(a-12\sqrt{2}-17\right)}{2}
Tohaina
Kua tāruatia ki te papatopenga
a+b\sqrt{2}=\left(1+\sqrt{2}\right)^{4}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a=\left(1+\sqrt{2}\right)^{4}-b\sqrt{2}
Tangohia te b\sqrt{2} mai i ngā taha e rua.
a=-\sqrt{2}b+\left(\sqrt{2}+1\right)^{4}
Whakaraupapatia anō ngā kīanga tau.
a+b\sqrt{2}=\left(1+\sqrt{2}\right)^{4}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
b\sqrt{2}=\left(1+\sqrt{2}\right)^{4}-a
Tangohia te a mai i ngā taha e rua.
\sqrt{2}b=-a+\left(\sqrt{2}+1\right)^{4}
He hanga arowhānui tō te whārite.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{-a+12\sqrt{2}+17}{\sqrt{2}}
Whakawehea ngā taha e rua ki te \sqrt{2}.
b=\frac{-a+12\sqrt{2}+17}{\sqrt{2}}
Mā te whakawehe ki te \sqrt{2} ka wetekia te whakareanga ki te \sqrt{2}.
b=\frac{\sqrt{2}\left(-a+12\sqrt{2}+17\right)}{2}
Whakawehe 17+12\sqrt{2}-a ki te \sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}