Aromātai
x+1
Whakaroha
x+1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{x-1}{x-1}+\frac{1}{x-1}\right)\times \frac{x^{2}-1}{x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x-1}{x-1}.
\frac{x-1+1}{x-1}\times \frac{x^{2}-1}{x}
Tā te mea he rite te tauraro o \frac{x-1}{x-1} me \frac{1}{x-1}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x}{x-1}\times \frac{x^{2}-1}{x}
Whakakotahitia ngā kupu rite i x-1+1.
\frac{x\left(x^{2}-1\right)}{\left(x-1\right)x}
Me whakarea te \frac{x}{x-1} ki te \frac{x^{2}-1}{x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x^{2}-1}{x-1}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\left(x-1\right)\left(x+1\right)}{x-1}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
x+1
Me whakakore tahi te x-1 i te taurunga me te tauraro.
\left(\frac{x-1}{x-1}+\frac{1}{x-1}\right)\times \frac{x^{2}-1}{x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x-1}{x-1}.
\frac{x-1+1}{x-1}\times \frac{x^{2}-1}{x}
Tā te mea he rite te tauraro o \frac{x-1}{x-1} me \frac{1}{x-1}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x}{x-1}\times \frac{x^{2}-1}{x}
Whakakotahitia ngā kupu rite i x-1+1.
\frac{x\left(x^{2}-1\right)}{\left(x-1\right)x}
Me whakarea te \frac{x}{x-1} ki te \frac{x^{2}-1}{x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x^{2}-1}{x-1}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\left(x-1\right)\left(x+1\right)}{x-1}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
x+1
Me whakakore tahi te x-1 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}