Aromātai
-0.8375
Tauwehe
-0.8375
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{23}{200}-0.05}{0.4}-1
Whakarohaina te \frac{0.23}{2} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{\frac{23}{200}-\frac{1}{20}}{0.4}-1
Me tahuri ki tau ā-ira 0.05 ki te hautau \frac{5}{100}. Whakahekea te hautanga \frac{5}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\frac{23}{200}-\frac{10}{200}}{0.4}-1
Ko te maha noa iti rawa atu o 200 me 20 ko 200. Me tahuri \frac{23}{200} me \frac{1}{20} ki te hautau me te tautūnga 200.
\frac{\frac{23-10}{200}}{0.4}-1
Tā te mea he rite te tauraro o \frac{23}{200} me \frac{10}{200}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{13}{200}}{0.4}-1
Tangohia te 10 i te 23, ka 13.
\frac{13}{200\times 0.4}-1
Tuhia te \frac{\frac{13}{200}}{0.4} hei hautanga kotahi.
\frac{13}{80}-1
Whakareatia te 200 ki te 0.4, ka 80.
\frac{13}{80}-\frac{80}{80}
Me tahuri te 1 ki te hautau \frac{80}{80}.
\frac{13-80}{80}
Tā te mea he rite te tauraro o \frac{13}{80} me \frac{80}{80}, me tango rāua mā te tango i ō raua taurunga.
-\frac{67}{80}
Tangohia te 80 i te 13, ka -67.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}