( 0 . \sqrt[ 3 ] { 1 } + 3.5 \cdot 1 ^ { 5 } - \sqrt[ 3 ] { 27 } ) : \sqrt { 144 } =
Aromātai
\frac{1}{24}\approx 0.041666667
Tauwehe
\frac{1}{3 \cdot 2 ^ {3}} = 0.041666666666666664
Tohaina
Kua tāruatia ki te papatopenga
\frac{0\times 1+3.5\times 1^{5}-\sqrt[3]{27}}{\sqrt{144}}
Tātaitia te \sqrt[3]{1} kia tae ki 1.
\frac{0+3.5\times 1^{5}-\sqrt[3]{27}}{\sqrt{144}}
Whakareatia te 0 ki te 1, ka 0.
\frac{0+3.5\times 1-\sqrt[3]{27}}{\sqrt{144}}
Tātaihia te 1 mā te pū o 5, kia riro ko 1.
\frac{0+3.5-\sqrt[3]{27}}{\sqrt{144}}
Whakareatia te 3.5 ki te 1, ka 3.5.
\frac{3.5-\sqrt[3]{27}}{\sqrt{144}}
Tāpirihia te 0 ki te 3.5, ka 3.5.
\frac{3.5-3}{\sqrt{144}}
Tātaitia te \sqrt[3]{27} kia tae ki 3.
\frac{0.5}{\sqrt{144}}
Tangohia te 3 i te 3.5, ka 0.5.
\frac{0.5}{12}
Tātaitia te pūtakerua o 144 kia tae ki 12.
\frac{5}{120}
Whakarohaina te \frac{0.5}{12} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{1}{24}
Whakahekea te hautanga \frac{5}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}