Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-y^{2}-2y+7-7y^{2}
Tāpirihia te 3 ki te 4, ka 7.
-8y^{2}-2y+7
Pahekotia te -y^{2} me -7y^{2}, ka -8y^{2}.
factor(-y^{2}-2y+7-7y^{2})
Tāpirihia te 3 ki te 4, ka 7.
factor(-8y^{2}-2y+7)
Pahekotia te -y^{2} me -7y^{2}, ka -8y^{2}.
-8y^{2}-2y+7=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)\times 7}}{2\left(-8\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)\times 7}}{2\left(-8\right)}
Pūrua -2.
y=\frac{-\left(-2\right)±\sqrt{4+32\times 7}}{2\left(-8\right)}
Whakareatia -4 ki te -8.
y=\frac{-\left(-2\right)±\sqrt{4+224}}{2\left(-8\right)}
Whakareatia 32 ki te 7.
y=\frac{-\left(-2\right)±\sqrt{228}}{2\left(-8\right)}
Tāpiri 4 ki te 224.
y=\frac{-\left(-2\right)±2\sqrt{57}}{2\left(-8\right)}
Tuhia te pūtakerua o te 228.
y=\frac{2±2\sqrt{57}}{2\left(-8\right)}
Ko te tauaro o -2 ko 2.
y=\frac{2±2\sqrt{57}}{-16}
Whakareatia 2 ki te -8.
y=\frac{2\sqrt{57}+2}{-16}
Nā, me whakaoti te whārite y=\frac{2±2\sqrt{57}}{-16} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{57}.
y=\frac{-\sqrt{57}-1}{8}
Whakawehe 2+2\sqrt{57} ki te -16.
y=\frac{2-2\sqrt{57}}{-16}
Nā, me whakaoti te whārite y=\frac{2±2\sqrt{57}}{-16} ina he tango te ±. Tango 2\sqrt{57} mai i 2.
y=\frac{\sqrt{57}-1}{8}
Whakawehe 2-2\sqrt{57} ki te -16.
-8y^{2}-2y+7=-8\left(y-\frac{-\sqrt{57}-1}{8}\right)\left(y-\frac{\sqrt{57}-1}{8}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-1-\sqrt{57}}{8} mō te x_{1} me te \frac{-1+\sqrt{57}}{8} mō te x_{2}.