Aromātai
2\left(x+1\right)
Whakaroha
2x+2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(-x\right)^{2}-2\left(-x\right)+1-\left(x+1\right)\left(x-1\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-x-1\right)^{2}.
x^{2}-2\left(-x\right)+1-\left(x+1\right)\left(x-1\right)
Tātaihia te -x mā te pū o 2, kia riro ko x^{2}.
x^{2}+2x+1-\left(x+1\right)\left(x-1\right)
Whakareatia te -2 ki te -1, ka 2.
x^{2}+2x+1-\left(x^{2}-1\right)
Whakaarohia te \left(x+1\right)\left(x-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
x^{2}+2x+1-x^{2}+1
Hei kimi i te tauaro o x^{2}-1, kimihia te tauaro o ia taurangi.
2x+1+1
Pahekotia te x^{2} me -x^{2}, ka 0.
2x+2
Tāpirihia te 1 ki te 1, ka 2.
\left(-x\right)^{2}-2\left(-x\right)+1-\left(x+1\right)\left(x-1\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-x-1\right)^{2}.
x^{2}-2\left(-x\right)+1-\left(x+1\right)\left(x-1\right)
Tātaihia te -x mā te pū o 2, kia riro ko x^{2}.
x^{2}+2x+1-\left(x+1\right)\left(x-1\right)
Whakareatia te -2 ki te -1, ka 2.
x^{2}+2x+1-\left(x^{2}-1\right)
Whakaarohia te \left(x+1\right)\left(x-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
x^{2}+2x+1-x^{2}+1
Hei kimi i te tauaro o x^{2}-1, kimihia te tauaro o ia taurangi.
2x+1+1
Pahekotia te x^{2} me -x^{2}, ka 0.
2x+2
Tāpirihia te 1 ki te 1, ka 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}