Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(-x\right)^{2}
Whakareatia te -x ki te -x, ka \left(-x\right)^{2}.
x^{2}
Tātaihia te -x mā te pū o 2, kia riro ko x^{2}.
-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
-x^{1}\left(-1\right)x^{1-1}-x^{1}\left(-1\right)x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-x^{1}\left(-1\right)x^{0}-x^{1}\left(-1\right)x^{0}
Whakarūnātia.
-\left(-1\right)x^{1}-\left(-x^{1}\right)
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
x^{1}+x^{1}
Whakarūnātia.
\left(1+1\right)x^{1}
Pahekotia ngā kīanga tau ōrite.
2x^{1}
Tāpiri 1 ki te 1.
2x
Mō tētahi kupu t, t^{1}=t.