Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-m^{2}-m+2-m-2=1
Hei kimi i te tauaro o m+2, kimihia te tauaro o ia taurangi.
-m^{2}-2m+2-2=1
Pahekotia te -m me -m, ka -2m.
-m^{2}-2m=1
Tangohia te 2 i te 2, ka 0.
-m^{2}-2m-1=0
Tangohia te 1 mai i ngā taha e rua.
a+b=-2 ab=-\left(-1\right)=1
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -m^{2}+am+bm-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-m^{2}-m\right)+\left(-m-1\right)
Tuhia anō te -m^{2}-2m-1 hei \left(-m^{2}-m\right)+\left(-m-1\right).
m\left(-m-1\right)-m-1
Whakatauwehea atu m i te -m^{2}-m.
\left(-m-1\right)\left(m+1\right)
Whakatauwehea atu te kīanga pātahi -m-1 mā te whakamahi i te āhuatanga tātai tohatoha.
m=-1 m=-1
Hei kimi otinga whārite, me whakaoti te -m-1=0 me te m+1=0.
-m^{2}-m+2-m-2=1
Hei kimi i te tauaro o m+2, kimihia te tauaro o ia taurangi.
-m^{2}-2m+2-2=1
Pahekotia te -m me -m, ka -2m.
-m^{2}-2m=1
Tangohia te 2 i te 2, ka 0.
-m^{2}-2m-1=0
Tangohia te 1 mai i ngā taha e rua.
m=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -2 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Pūrua -2.
m=\frac{-\left(-2\right)±\sqrt{4+4\left(-1\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
m=\frac{-\left(-2\right)±\sqrt{4-4}}{2\left(-1\right)}
Whakareatia 4 ki te -1.
m=\frac{-\left(-2\right)±\sqrt{0}}{2\left(-1\right)}
Tāpiri 4 ki te -4.
m=-\frac{-2}{2\left(-1\right)}
Tuhia te pūtakerua o te 0.
m=\frac{2}{2\left(-1\right)}
Ko te tauaro o -2 ko 2.
m=\frac{2}{-2}
Whakareatia 2 ki te -1.
m=-1
Whakawehe 2 ki te -2.
-m^{2}-m+2-m-2=1
Hei kimi i te tauaro o m+2, kimihia te tauaro o ia taurangi.
-m^{2}-2m+2-2=1
Pahekotia te -m me -m, ka -2m.
-m^{2}-2m=1
Tangohia te 2 i te 2, ka 0.
\frac{-m^{2}-2m}{-1}=\frac{1}{-1}
Whakawehea ngā taha e rua ki te -1.
m^{2}+\left(-\frac{2}{-1}\right)m=\frac{1}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
m^{2}+2m=\frac{1}{-1}
Whakawehe -2 ki te -1.
m^{2}+2m=-1
Whakawehe 1 ki te -1.
m^{2}+2m+1^{2}=-1+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}+2m+1=-1+1
Pūrua 1.
m^{2}+2m+1=0
Tāpiri -1 ki te 1.
\left(m+1\right)^{2}=0
Tauwehea m^{2}+2m+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+1\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m+1=0 m+1=0
Whakarūnātia.
m=-1 m=-1
Me tango 1 mai i ngā taha e rua o te whārite.
m=-1
Kua oti te whārite te whakatau. He ōrite ngā whakatau.