Aromātai
36.6
Tauwehe
\frac{3 \cdot 61}{5} = 36\frac{3}{5} = 36.6
Tohaina
Kua tāruatia ki te papatopenga
\frac{-81\times 4}{2\times 4+1}\times \frac{4}{9}\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Whakawehe -81 ki te \frac{2\times 4+1}{4} mā te whakarea -81 ki te tau huripoki o \frac{2\times 4+1}{4}.
\frac{-324}{2\times 4+1}\times \frac{4}{9}\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Whakareatia te -81 ki te 4, ka -324.
\frac{-324}{8+1}\times \frac{4}{9}\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Whakareatia te 2 ki te 4, ka 8.
\frac{-324}{9}\times \frac{4}{9}\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Tāpirihia te 8 ki te 1, ka 9.
-36\times \frac{4}{9}\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Whakawehea te -324 ki te 9, kia riro ko -36.
\frac{-36\times 4}{9}\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Tuhia te -36\times \frac{4}{9} hei hautanga kotahi.
\frac{-144}{9}\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Whakareatia te -36 ki te 4, ka -144.
-16\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Whakawehea te -144 ki te 9, kia riro ko -16.
48+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Whakareatia te -16 ki te -3, ka 48.
48+|-\frac{4+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Whakareatia te 2 ki te 2, ka 4.
48+|-\frac{5}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Tāpirihia te 4 ki te 1, ka 5.
48+\frac{5}{2}-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -\frac{5}{2} ko \frac{5}{2}.
\frac{96}{2}+\frac{5}{2}-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Me tahuri te 48 ki te hautau \frac{96}{2}.
\frac{96+5}{2}-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Tā te mea he rite te tauraro o \frac{96}{2} me \frac{5}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{101}{2}-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Tāpirihia te 96 ki te 5, ka 101.
\frac{101}{2}-\frac{37}{10}-|-2.7|-|-\frac{7\times 2+1}{2}|
Me tahuri ki tau ā-ira 3.7 ki te hautau \frac{37}{10}.
\frac{505}{10}-\frac{37}{10}-|-2.7|-|-\frac{7\times 2+1}{2}|
Ko te maha noa iti rawa atu o 2 me 10 ko 10. Me tahuri \frac{101}{2} me \frac{37}{10} ki te hautau me te tautūnga 10.
\frac{505-37}{10}-|-2.7|-|-\frac{7\times 2+1}{2}|
Tā te mea he rite te tauraro o \frac{505}{10} me \frac{37}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{468}{10}-|-2.7|-|-\frac{7\times 2+1}{2}|
Tangohia te 37 i te 505, ka 468.
\frac{234}{5}-|-2.7|-|-\frac{7\times 2+1}{2}|
Whakahekea te hautanga \frac{468}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{234}{5}-2.7-|-\frac{7\times 2+1}{2}|
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -2.7 ko 2.7.
\frac{234}{5}-\frac{27}{10}-|-\frac{7\times 2+1}{2}|
Me tahuri ki tau ā-ira 2.7 ki te hautau \frac{27}{10}.
\frac{468}{10}-\frac{27}{10}-|-\frac{7\times 2+1}{2}|
Ko te maha noa iti rawa atu o 5 me 10 ko 10. Me tahuri \frac{234}{5} me \frac{27}{10} ki te hautau me te tautūnga 10.
\frac{468-27}{10}-|-\frac{7\times 2+1}{2}|
Tā te mea he rite te tauraro o \frac{468}{10} me \frac{27}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{441}{10}-|-\frac{7\times 2+1}{2}|
Tangohia te 27 i te 468, ka 441.
\frac{441}{10}-|-\frac{14+1}{2}|
Whakareatia te 7 ki te 2, ka 14.
\frac{441}{10}-|-\frac{15}{2}|
Tāpirihia te 14 ki te 1, ka 15.
\frac{441}{10}-\frac{15}{2}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -\frac{15}{2} ko \frac{15}{2}.
\frac{441}{10}-\frac{75}{10}
Ko te maha noa iti rawa atu o 10 me 2 ko 10. Me tahuri \frac{441}{10} me \frac{15}{2} ki te hautau me te tautūnga 10.
\frac{441-75}{10}
Tā te mea he rite te tauraro o \frac{441}{10} me \frac{75}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{366}{10}
Tangohia te 75 i te 441, ka 366.
\frac{183}{5}
Whakahekea te hautanga \frac{366}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}