Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki x
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}x}(-8+3x^{2}+4xy^{2}+9x^{3}+xy^{2})
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-8+3x^{2}+5xy^{2}+9x^{3})
Pahekotia te 4xy^{2} me xy^{2}, ka 5xy^{2}.
2\times 3x^{2-1}+5y^{2}x^{1-1}+3\times 9x^{3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
6x^{2-1}+5y^{2}x^{1-1}+3\times 9x^{3-1}
Whakareatia 2 ki te 3.
6x^{1}+5y^{2}x^{1-1}+3\times 9x^{3-1}
Tango 1 mai i 2.
6x^{1}+5y^{2}x^{0}+3\times 9x^{3-1}
Tango 1 mai i 1.
6x^{1}+5y^{2}x^{0}+27x^{3-1}
Whakareatia 1 ki te 5y^{2}.
6x^{1}+5y^{2}x^{0}+27x^{2}
Tango 1 mai i 3.
6x+5y^{2}x^{0}+27x^{2}
Mō tētahi kupu t, t^{1}=t.
6x+5y^{2}\times 1+27x^{2}
Mō tētahi kupu t mahue te 0, t^{0}=1.
6x+5y^{2}+27x^{2}
Mō tētahi kupu t, t\times 1=t me 1t=t.