Whakaoti mō x
x=-1
x=\frac{3}{7}\approx 0.428571429
Graph
Tohaina
Kua tāruatia ki te papatopenga
49x^{2}+28x+4-25=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-7x-2\right)^{2}.
49x^{2}+28x-21=0
Tangohia te 25 i te 4, ka -21.
7x^{2}+4x-3=0
Whakawehea ngā taha e rua ki te 7.
a+b=4 ab=7\left(-3\right)=-21
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 7x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,21 -3,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -21.
-1+21=20 -3+7=4
Tātaihia te tapeke mō ia takirua.
a=-3 b=7
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(7x^{2}-3x\right)+\left(7x-3\right)
Tuhia anō te 7x^{2}+4x-3 hei \left(7x^{2}-3x\right)+\left(7x-3\right).
x\left(7x-3\right)+7x-3
Whakatauwehea atu x i te 7x^{2}-3x.
\left(7x-3\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 7x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{3}{7} x=-1
Hei kimi otinga whārite, me whakaoti te 7x-3=0 me te x+1=0.
49x^{2}+28x+4-25=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-7x-2\right)^{2}.
49x^{2}+28x-21=0
Tangohia te 25 i te 4, ka -21.
x=\frac{-28±\sqrt{28^{2}-4\times 49\left(-21\right)}}{2\times 49}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 49 mō a, 28 mō b, me -21 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\times 49\left(-21\right)}}{2\times 49}
Pūrua 28.
x=\frac{-28±\sqrt{784-196\left(-21\right)}}{2\times 49}
Whakareatia -4 ki te 49.
x=\frac{-28±\sqrt{784+4116}}{2\times 49}
Whakareatia -196 ki te -21.
x=\frac{-28±\sqrt{4900}}{2\times 49}
Tāpiri 784 ki te 4116.
x=\frac{-28±70}{2\times 49}
Tuhia te pūtakerua o te 4900.
x=\frac{-28±70}{98}
Whakareatia 2 ki te 49.
x=\frac{42}{98}
Nā, me whakaoti te whārite x=\frac{-28±70}{98} ina he tāpiri te ±. Tāpiri -28 ki te 70.
x=\frac{3}{7}
Whakahekea te hautanga \frac{42}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
x=-\frac{98}{98}
Nā, me whakaoti te whārite x=\frac{-28±70}{98} ina he tango te ±. Tango 70 mai i -28.
x=-1
Whakawehe -98 ki te 98.
x=\frac{3}{7} x=-1
Kua oti te whārite te whakatau.
49x^{2}+28x+4-25=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-7x-2\right)^{2}.
49x^{2}+28x-21=0
Tangohia te 25 i te 4, ka -21.
49x^{2}+28x=21
Me tāpiri te 21 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{49x^{2}+28x}{49}=\frac{21}{49}
Whakawehea ngā taha e rua ki te 49.
x^{2}+\frac{28}{49}x=\frac{21}{49}
Mā te whakawehe ki te 49 ka wetekia te whakareanga ki te 49.
x^{2}+\frac{4}{7}x=\frac{21}{49}
Whakahekea te hautanga \frac{28}{49} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
x^{2}+\frac{4}{7}x=\frac{3}{7}
Whakahekea te hautanga \frac{21}{49} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
x^{2}+\frac{4}{7}x+\left(\frac{2}{7}\right)^{2}=\frac{3}{7}+\left(\frac{2}{7}\right)^{2}
Whakawehea te \frac{4}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{2}{7}. Nā, tāpiria te pūrua o te \frac{2}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{4}{7}x+\frac{4}{49}=\frac{3}{7}+\frac{4}{49}
Pūruatia \frac{2}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{4}{7}x+\frac{4}{49}=\frac{25}{49}
Tāpiri \frac{3}{7} ki te \frac{4}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{2}{7}\right)^{2}=\frac{25}{49}
Tauwehea x^{2}+\frac{4}{7}x+\frac{4}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{7}\right)^{2}}=\sqrt{\frac{25}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{2}{7}=\frac{5}{7} x+\frac{2}{7}=-\frac{5}{7}
Whakarūnātia.
x=\frac{3}{7} x=-1
Me tango \frac{2}{7} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}