Aromātai
45.25
Tauwehe
\frac{181}{2 ^ {2}} = 45\frac{1}{4} = 45.25
Tohaina
Kua tāruatia ki te papatopenga
-7\left(\frac{4}{3}-\frac{3}{4}+\frac{1}{2}\right)\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
-7\left(\frac{16}{12}-\frac{9}{12}+\frac{1}{2}\right)\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{4}{3} me \frac{3}{4} ki te hautau me te tautūnga 12.
-7\left(\frac{16-9}{12}+\frac{1}{2}\right)\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Tā te mea he rite te tauraro o \frac{16}{12} me \frac{9}{12}, me tango rāua mā te tango i ō raua taurunga.
-7\left(\frac{7}{12}+\frac{1}{2}\right)\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Tangohia te 9 i te 16, ka 7.
-7\left(\frac{7}{12}+\frac{6}{12}\right)\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Ko te maha noa iti rawa atu o 12 me 2 ko 12. Me tahuri \frac{7}{12} me \frac{1}{2} ki te hautau me te tautūnga 12.
-7\times \frac{7+6}{12}\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Tā te mea he rite te tauraro o \frac{7}{12} me \frac{6}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-7\times \frac{13}{12}\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Tāpirihia te 7 ki te 6, ka 13.
\frac{-7\times 13}{12}\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Tuhia te -7\times \frac{13}{12} hei hautanga kotahi.
\frac{-91}{12}\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Whakareatia te -7 ki te 13, ka -91.
-\frac{91}{12}\left(-6\right)-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Ka taea te hautanga \frac{-91}{12} te tuhi anō ko -\frac{91}{12} mā te tango i te tohu tōraro.
\frac{-91\left(-6\right)}{12}-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Tuhia te -\frac{91}{12}\left(-6\right) hei hautanga kotahi.
\frac{546}{12}-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Whakareatia te -91 ki te -6, ka 546.
\frac{91}{2}-\frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1}
Whakahekea te hautanga \frac{546}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{91}{2}-\frac{0.25^{2}}{-\frac{1}{4}\left(-1\right)}
Tuhia te \frac{\frac{0.25^{2}}{-\frac{1}{4}}}{-1} hei hautanga kotahi.
\frac{91}{2}-\frac{0.0625}{-\frac{1}{4}\left(-1\right)}
Tātaihia te 0.25 mā te pū o 2, kia riro ko 0.0625.
\frac{91}{2}-\frac{0.0625}{\frac{1}{4}}
Whakareatia te -\frac{1}{4} ki te -1, ka \frac{1}{4}.
\frac{91}{2}-0.0625\times 4
Whakawehe 0.0625 ki te \frac{1}{4} mā te whakarea 0.0625 ki te tau huripoki o \frac{1}{4}.
\frac{91}{2}-0.25
Whakareatia te 0.0625 ki te 4, ka 0.25.
\frac{91}{2}-\frac{1}{4}
Me tahuri ki tau ā-ira 0.25 ki te hautau \frac{25}{100}. Whakahekea te hautanga \frac{25}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{182}{4}-\frac{1}{4}
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{91}{2} me \frac{1}{4} ki te hautau me te tautūnga 4.
\frac{182-1}{4}
Tā te mea he rite te tauraro o \frac{182}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{181}{4}
Tangohia te 1 i te 182, ka 181.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}