Aromātai
64
Tauwehe
2^{6}
Tohaina
Kua tāruatia ki te papatopenga
-64\left(-\frac{31}{7}\right)-64\times \frac{3\times 7+3}{7}
Whakawehe -64 ki te -\frac{7}{31} mā te whakarea -64 ki te tau huripoki o -\frac{7}{31}.
\frac{-64\left(-31\right)}{7}-64\times \frac{3\times 7+3}{7}
Tuhia te -64\left(-\frac{31}{7}\right) hei hautanga kotahi.
\frac{1984}{7}-64\times \frac{3\times 7+3}{7}
Whakareatia te -64 ki te -31, ka 1984.
\frac{1984}{7}-64\times \frac{21+3}{7}
Whakareatia te 3 ki te 7, ka 21.
\frac{1984}{7}-64\times \frac{24}{7}
Tāpirihia te 21 ki te 3, ka 24.
\frac{1984}{7}+\frac{-64\times 24}{7}
Tuhia te -64\times \frac{24}{7} hei hautanga kotahi.
\frac{1984}{7}+\frac{-1536}{7}
Whakareatia te -64 ki te 24, ka -1536.
\frac{1984}{7}-\frac{1536}{7}
Ka taea te hautanga \frac{-1536}{7} te tuhi anō ko -\frac{1536}{7} mā te tango i te tohu tōraro.
\frac{1984-1536}{7}
Tā te mea he rite te tauraro o \frac{1984}{7} me \frac{1536}{7}, me tango rāua mā te tango i ō raua taurunga.
\frac{448}{7}
Tangohia te 1536 i te 1984, ka 448.
64
Whakawehea te 448 ki te 7, kia riro ko 64.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}