Aromātai
-3
Tauwehe
-3
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( - 6 ) \cdot ( ( - 7 ) + 3 - ( 7 + 6 - 14 ) ) - 7 \cdot 3 =
Tohaina
Kua tāruatia ki te papatopenga
-6\left(-4-\left(7+6-14\right)\right)-7\times 3
Tāpirihia te -7 ki te 3, ka -4.
-6\left(-4-\left(13-14\right)\right)-7\times 3
Tāpirihia te 7 ki te 6, ka 13.
-6\left(-4-\left(-1\right)\right)-7\times 3
Tangohia te 14 i te 13, ka -1.
-6\left(-4+1\right)-7\times 3
Ko te tauaro o -1 ko 1.
-6\left(-3\right)-7\times 3
Tāpirihia te -4 ki te 1, ka -3.
18-7\times 3
Whakareatia te -6 ki te -3, ka 18.
18-21
Whakareatia te 7 ki te 3, ka 21.
-3
Tangohia te 21 i te 18, ka -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}