Aromātai
200x^{3}+180x^{2}+16x-12
Whakaroha
200x^{3}+180x^{2}+16x-12
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(20x^{2}+10x-4x-2\right)\left(10x+6\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o -5x+1 ki ia tau o -4x-2.
\left(20x^{2}+6x-2\right)\left(10x+6\right)
Pahekotia te 10x me -4x, ka 6x.
200x^{3}+120x^{2}+60x^{2}+36x-20x-12
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 20x^{2}+6x-2 ki ia tau o 10x+6.
200x^{3}+180x^{2}+36x-20x-12
Pahekotia te 120x^{2} me 60x^{2}, ka 180x^{2}.
200x^{3}+180x^{2}+16x-12
Pahekotia te 36x me -20x, ka 16x.
\left(20x^{2}+10x-4x-2\right)\left(10x+6\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o -5x+1 ki ia tau o -4x-2.
\left(20x^{2}+6x-2\right)\left(10x+6\right)
Pahekotia te 10x me -4x, ka 6x.
200x^{3}+120x^{2}+60x^{2}+36x-20x-12
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 20x^{2}+6x-2 ki ia tau o 10x+6.
200x^{3}+180x^{2}+36x-20x-12
Pahekotia te 120x^{2} me 60x^{2}, ka 180x^{2}.
200x^{3}+180x^{2}+16x-12
Pahekotia te 36x me -20x, ka 16x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}