Aromātai
19t^{2}-51t+27
Whakaroha
19t^{2}-51t+27
Tohaina
Kua tāruatia ki te papatopenga
25t^{2}-50t+25+\left(2t-1\right)\left(-3t-2\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-5t+5\right)^{2}.
25t^{2}-50t+25-6t^{2}-t+2
Whakamahia te āhuatanga tuaritanga hei whakarea te 2t-1 ki te -3t-2 ka whakakotahi i ngā kupu rite.
19t^{2}-50t+25-t+2
Pahekotia te 25t^{2} me -6t^{2}, ka 19t^{2}.
19t^{2}-51t+25+2
Pahekotia te -50t me -t, ka -51t.
19t^{2}-51t+27
Tāpirihia te 25 ki te 2, ka 27.
25t^{2}-50t+25+\left(2t-1\right)\left(-3t-2\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-5t+5\right)^{2}.
25t^{2}-50t+25-6t^{2}-t+2
Whakamahia te āhuatanga tuaritanga hei whakarea te 2t-1 ki te -3t-2 ka whakakotahi i ngā kupu rite.
19t^{2}-50t+25-t+2
Pahekotia te 25t^{2} me -6t^{2}, ka 19t^{2}.
19t^{2}-51t+25+2
Pahekotia te -50t me -t, ka -51t.
19t^{2}-51t+27
Tāpirihia te 25 ki te 2, ka 27.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}