Aromātai
52a^{12}
Whakaroha
52a^{12}
Tohaina
Kua tāruatia ki te papatopenga
\left(-5\right)^{2}\left(a^{6}\right)^{2}+\left(-3a^{3}\right)^{3}\left(-a^{3}\right)
Whakarohaina te \left(-5a^{6}\right)^{2}.
\left(-5\right)^{2}a^{12}+\left(-3a^{3}\right)^{3}\left(-a^{3}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 2 kia riro ai te 12.
25a^{12}+\left(-3a^{3}\right)^{3}\left(-a^{3}\right)
Tātaihia te -5 mā te pū o 2, kia riro ko 25.
25a^{12}+\left(-3\right)^{3}\left(a^{3}\right)^{3}\left(-a^{3}\right)
Whakarohaina te \left(-3a^{3}\right)^{3}.
25a^{12}+\left(-3\right)^{3}a^{9}\left(-a^{3}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 3 kia riro ai te 9.
25a^{12}-27a^{9}\left(-a^{3}\right)
Tātaihia te -3 mā te pū o 3, kia riro ko -27.
25a^{12}+27a^{9}a^{3}
Whakareatia te -27 ki te -1, ka 27.
25a^{12}+27a^{12}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 9 me te 3 kia riro ai te 12.
52a^{12}
Pahekotia te 25a^{12} me 27a^{12}, ka 52a^{12}.
\left(-5\right)^{2}\left(a^{6}\right)^{2}+\left(-3a^{3}\right)^{3}\left(-a^{3}\right)
Whakarohaina te \left(-5a^{6}\right)^{2}.
\left(-5\right)^{2}a^{12}+\left(-3a^{3}\right)^{3}\left(-a^{3}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 2 kia riro ai te 12.
25a^{12}+\left(-3a^{3}\right)^{3}\left(-a^{3}\right)
Tātaihia te -5 mā te pū o 2, kia riro ko 25.
25a^{12}+\left(-3\right)^{3}\left(a^{3}\right)^{3}\left(-a^{3}\right)
Whakarohaina te \left(-3a^{3}\right)^{3}.
25a^{12}+\left(-3\right)^{3}a^{9}\left(-a^{3}\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 3 kia riro ai te 9.
25a^{12}-27a^{9}\left(-a^{3}\right)
Tātaihia te -3 mā te pū o 3, kia riro ko -27.
25a^{12}+27a^{9}a^{3}
Whakareatia te -27 ki te -1, ka 27.
25a^{12}+27a^{12}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 9 me te 3 kia riro ai te 12.
52a^{12}
Pahekotia te 25a^{12} me 27a^{12}, ka 52a^{12}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}