Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
-5\times \frac{21+1}{3}+7\left(-\frac{7\times 3+1}{3}\right)-\frac{12}{-\frac{3}{22}}
Whakareatia te 7 ki te 3, ka 21.
-5\times \frac{22}{3}+7\left(-\frac{7\times 3+1}{3}\right)-\frac{12}{-\frac{3}{22}}
Tāpirihia te 21 ki te 1, ka 22.
\frac{-5\times 22}{3}+7\left(-\frac{7\times 3+1}{3}\right)-\frac{12}{-\frac{3}{22}}
Tuhia te -5\times \frac{22}{3} hei hautanga kotahi.
\frac{-110}{3}+7\left(-\frac{7\times 3+1}{3}\right)-\frac{12}{-\frac{3}{22}}
Whakareatia te -5 ki te 22, ka -110.
-\frac{110}{3}+7\left(-\frac{7\times 3+1}{3}\right)-\frac{12}{-\frac{3}{22}}
Ka taea te hautanga \frac{-110}{3} te tuhi anō ko -\frac{110}{3} mā te tango i te tohu tōraro.
-\frac{110}{3}+7\left(-\frac{21+1}{3}\right)-\frac{12}{-\frac{3}{22}}
Whakareatia te 7 ki te 3, ka 21.
-\frac{110}{3}+7\left(-\frac{22}{3}\right)-\frac{12}{-\frac{3}{22}}
Tāpirihia te 21 ki te 1, ka 22.
-\frac{110}{3}+\frac{7\left(-22\right)}{3}-\frac{12}{-\frac{3}{22}}
Tuhia te 7\left(-\frac{22}{3}\right) hei hautanga kotahi.
-\frac{110}{3}+\frac{-154}{3}-\frac{12}{-\frac{3}{22}}
Whakareatia te 7 ki te -22, ka -154.
-\frac{110}{3}-\frac{154}{3}-\frac{12}{-\frac{3}{22}}
Ka taea te hautanga \frac{-154}{3} te tuhi anō ko -\frac{154}{3} mā te tango i te tohu tōraro.
\frac{-110-154}{3}-\frac{12}{-\frac{3}{22}}
Tā te mea he rite te tauraro o -\frac{110}{3} me \frac{154}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{-264}{3}-\frac{12}{-\frac{3}{22}}
Tangohia te 154 i te -110, ka -264.
-88-\frac{12}{-\frac{3}{22}}
Whakawehea te -264 ki te 3, kia riro ko -88.
-88-12\left(-\frac{22}{3}\right)
Whakawehe 12 ki te -\frac{3}{22} mā te whakarea 12 ki te tau huripoki o -\frac{3}{22}.
-88-\frac{12\left(-22\right)}{3}
Tuhia te 12\left(-\frac{22}{3}\right) hei hautanga kotahi.
-88-\frac{-264}{3}
Whakareatia te 12 ki te -22, ka -264.
-88-\left(-88\right)
Whakawehea te -264 ki te 3, kia riro ko -88.
-88+88
Ko te tauaro o -88 ko 88.
0
Tāpirihia te -88 ki te 88, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}