Aromātai
-\frac{599}{5}=-119.8
Tauwehe
-\frac{599}{5} = -119\frac{4}{5} = -119.8
Tohaina
Kua tāruatia ki te papatopenga
-5\left(\left(-\frac{1}{85}+\frac{17+8}{17}-\frac{1}{5}\right)\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 3 kia riro ai te 4.
-5\left(\left(-\frac{1}{85}+\frac{25}{17}-\frac{1}{5}\right)\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Tāpirihia te 17 ki te 8, ka 25.
-5\left(\left(-\frac{1}{85}+\frac{125}{85}-\frac{1}{5}\right)\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Ko te maha noa iti rawa atu o 85 me 17 ko 85. Me tahuri -\frac{1}{85} me \frac{25}{17} ki te hautau me te tautūnga 85.
-5\left(\left(\frac{-1+125}{85}-\frac{1}{5}\right)\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Tā te mea he rite te tauraro o -\frac{1}{85} me \frac{125}{85}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-5\left(\left(\frac{124}{85}-\frac{1}{5}\right)\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Tāpirihia te -1 ki te 125, ka 124.
-5\left(\left(\frac{124}{85}-\frac{17}{85}\right)\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Ko te maha noa iti rawa atu o 85 me 5 ko 85. Me tahuri \frac{124}{85} me \frac{1}{5} ki te hautau me te tautūnga 85.
-5\left(\frac{124-17}{85}\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Tā te mea he rite te tauraro o \frac{124}{85} me \frac{17}{85}, me tango rāua mā te tango i ō raua taurunga.
-5\left(\frac{107}{85}\times 17-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Tangohia te 17 i te 124, ka 107.
-5\left(\frac{107\times 17}{85}-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Tuhia te \frac{107}{85}\times 17 hei hautanga kotahi.
-5\left(\frac{1819}{85}-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Whakareatia te 107 ki te 17, ka 1819.
-5\left(\frac{107}{5}-\left(-\frac{4}{5}\right)^{2}\right)-|\left(-2\right)^{4}|
Whakahekea te hautanga \frac{1819}{85} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 17.
-5\left(\frac{107}{5}-\frac{16}{25}\right)-|\left(-2\right)^{4}|
Tātaihia te -\frac{4}{5} mā te pū o 2, kia riro ko \frac{16}{25}.
-5\left(\frac{535}{25}-\frac{16}{25}\right)-|\left(-2\right)^{4}|
Ko te maha noa iti rawa atu o 5 me 25 ko 25. Me tahuri \frac{107}{5} me \frac{16}{25} ki te hautau me te tautūnga 25.
-5\times \frac{535-16}{25}-|\left(-2\right)^{4}|
Tā te mea he rite te tauraro o \frac{535}{25} me \frac{16}{25}, me tango rāua mā te tango i ō raua taurunga.
-5\times \frac{519}{25}-|\left(-2\right)^{4}|
Tangohia te 16 i te 535, ka 519.
\frac{-5\times 519}{25}-|\left(-2\right)^{4}|
Tuhia te -5\times \frac{519}{25} hei hautanga kotahi.
\frac{-2595}{25}-|\left(-2\right)^{4}|
Whakareatia te -5 ki te 519, ka -2595.
-\frac{519}{5}-|\left(-2\right)^{4}|
Whakahekea te hautanga \frac{-2595}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
-\frac{519}{5}-|16|
Tātaihia te -2 mā te pū o 4, kia riro ko 16.
-\frac{519}{5}-16
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o 16 ko 16.
-\frac{519}{5}-\frac{80}{5}
Me tahuri te 16 ki te hautau \frac{80}{5}.
\frac{-519-80}{5}
Tā te mea he rite te tauraro o -\frac{519}{5} me \frac{80}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{599}{5}
Tangohia te 80 i te -519, ka -599.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}