Aromātai
-\frac{259}{2}=-129.5
Tauwehe
-\frac{259}{2} = -129\frac{1}{2} = -129.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{-125}{-2}+3\left(-4^{3}\right)
Tātaihia te -5 mā te pū o 3, kia riro ko -125.
\frac{125}{2}+3\left(-4^{3}\right)
Ka taea te hautanga \frac{-125}{-2} te whakamāmā ki te \frac{125}{2} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
\frac{125}{2}+3\left(-64\right)
Tātaihia te 4 mā te pū o 3, kia riro ko 64.
\frac{125}{2}-192
Whakareatia te 3 ki te -64, ka -192.
\frac{125}{2}-\frac{384}{2}
Me tahuri te 192 ki te hautau \frac{384}{2}.
\frac{125-384}{2}
Tā te mea he rite te tauraro o \frac{125}{2} me \frac{384}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{259}{2}
Tangohia te 384 i te 125, ka -259.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}