Aromātai
-\frac{2}{3}\approx -0.666666667
Tauwehe
-\frac{2}{3} = -0.6666666666666666
Tohaina
Kua tāruatia ki te papatopenga
-\frac{36+5}{9}-\left(-\frac{3\times 6+1}{6}\right)-\frac{2\times 9+4}{9}+\frac{3\times 6+1}{6}
Whakareatia te 4 ki te 9, ka 36.
-\frac{41}{9}-\left(-\frac{3\times 6+1}{6}\right)-\frac{2\times 9+4}{9}+\frac{3\times 6+1}{6}
Tāpirihia te 36 ki te 5, ka 41.
-\frac{41}{9}-\left(-\frac{18+1}{6}\right)-\frac{2\times 9+4}{9}+\frac{3\times 6+1}{6}
Whakareatia te 3 ki te 6, ka 18.
-\frac{41}{9}-\left(-\frac{19}{6}\right)-\frac{2\times 9+4}{9}+\frac{3\times 6+1}{6}
Tāpirihia te 18 ki te 1, ka 19.
-\frac{41}{9}+\frac{19}{6}-\frac{2\times 9+4}{9}+\frac{3\times 6+1}{6}
Ko te tauaro o -\frac{19}{6} ko \frac{19}{6}.
-\frac{82}{18}+\frac{57}{18}-\frac{2\times 9+4}{9}+\frac{3\times 6+1}{6}
Ko te maha noa iti rawa atu o 9 me 6 ko 18. Me tahuri -\frac{41}{9} me \frac{19}{6} ki te hautau me te tautūnga 18.
\frac{-82+57}{18}-\frac{2\times 9+4}{9}+\frac{3\times 6+1}{6}
Tā te mea he rite te tauraro o -\frac{82}{18} me \frac{57}{18}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{25}{18}-\frac{2\times 9+4}{9}+\frac{3\times 6+1}{6}
Tāpirihia te -82 ki te 57, ka -25.
-\frac{25}{18}-\frac{18+4}{9}+\frac{3\times 6+1}{6}
Whakareatia te 2 ki te 9, ka 18.
-\frac{25}{18}-\frac{22}{9}+\frac{3\times 6+1}{6}
Tāpirihia te 18 ki te 4, ka 22.
-\frac{25}{18}-\frac{44}{18}+\frac{3\times 6+1}{6}
Ko te maha noa iti rawa atu o 18 me 9 ko 18. Me tahuri -\frac{25}{18} me \frac{22}{9} ki te hautau me te tautūnga 18.
\frac{-25-44}{18}+\frac{3\times 6+1}{6}
Tā te mea he rite te tauraro o -\frac{25}{18} me \frac{44}{18}, me tango rāua mā te tango i ō raua taurunga.
\frac{-69}{18}+\frac{3\times 6+1}{6}
Tangohia te 44 i te -25, ka -69.
-\frac{23}{6}+\frac{3\times 6+1}{6}
Whakahekea te hautanga \frac{-69}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{23}{6}+\frac{18+1}{6}
Whakareatia te 3 ki te 6, ka 18.
-\frac{23}{6}+\frac{19}{6}
Tāpirihia te 18 ki te 1, ka 19.
\frac{-23+19}{6}
Tā te mea he rite te tauraro o -\frac{23}{6} me \frac{19}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-4}{6}
Tāpirihia te -23 ki te 19, ka -4.
-\frac{2}{3}
Whakahekea te hautanga \frac{-4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}