Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-\frac{4\times 20+1}{20}\right)\left(-125\right)}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Tuhia te \frac{\frac{\left(-\frac{4\times 20+1}{20}\right)\left(-125\right)}{\left(-\frac{1}{2}\right)^{3}}}{-10} hei hautanga kotahi.
\frac{\left(-\frac{80+1}{20}\right)\left(-125\right)}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Whakareatia te 4 ki te 20, ka 80.
\frac{-\frac{81}{20}\left(-125\right)}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Tāpirihia te 80 ki te 1, ka 81.
\frac{\frac{-81\left(-125\right)}{20}}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Tuhia te -\frac{81}{20}\left(-125\right) hei hautanga kotahi.
\frac{\frac{10125}{20}}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Whakareatia te -81 ki te -125, ka 10125.
\frac{\frac{2025}{4}}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Whakahekea te hautanga \frac{10125}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\frac{2025}{4}}{-\frac{1}{8}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Tātaihia te -\frac{1}{2} mā te pū o 3, kia riro ko -\frac{1}{8}.
\frac{\frac{2025}{4}}{\frac{-\left(-10\right)}{8}}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Tuhia te -\frac{1}{8}\left(-10\right) hei hautanga kotahi.
\frac{\frac{2025}{4}}{\frac{10}{8}}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Whakareatia te -1 ki te -10, ka 10.
\frac{\frac{2025}{4}}{\frac{5}{4}}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Whakahekea te hautanga \frac{10}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{2025}{4}\times \frac{4}{5}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Whakawehe \frac{2025}{4} ki te \frac{5}{4} mā te whakarea \frac{2025}{4} ki te tau huripoki o \frac{5}{4}.
\frac{2025\times 4}{4\times 5}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Me whakarea te \frac{2025}{4} ki te \frac{4}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2025}{5}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Me whakakore tahi te 4 i te taurunga me te tauraro.
405\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Whakawehea te 2025 ki te 5, kia riro ko 405.
405\left(-\frac{1}{243}\right)\times 0\times 1^{2}
Tātaihia te -\frac{1}{3} mā te pū o 5, kia riro ko -\frac{1}{243}.
\frac{405\left(-1\right)}{243}\times 0\times 1^{2}
Tuhia te 405\left(-\frac{1}{243}\right) hei hautanga kotahi.
\frac{-405}{243}\times 0\times 1^{2}
Whakareatia te 405 ki te -1, ka -405.
-\frac{5}{3}\times 0\times 1^{2}
Whakahekea te hautanga \frac{-405}{243} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 81.
0\times 1^{2}
Whakareatia te -\frac{5}{3} ki te 0, ka 0.
0\times 1
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
0
Whakareatia te 0 ki te 1, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}