Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\left(-\frac{80+1}{20}\right)\left(-125\right)=\left(-\frac{1}{2}\right)^{3}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Whakareatia te 4 ki te 20, ka 80.
-\frac{81}{20}\left(-125\right)=\left(-\frac{1}{2}\right)^{3}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Tāpirihia te 80 ki te 1, ka 81.
\frac{-81\left(-125\right)}{20}=\left(-\frac{1}{2}\right)^{3}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Tuhia te -\frac{81}{20}\left(-125\right) hei hautanga kotahi.
\frac{10125}{20}=\left(-\frac{1}{2}\right)^{3}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Whakareatia te -81 ki te -125, ka 10125.
\frac{2025}{4}=\left(-\frac{1}{2}\right)^{3}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Whakahekea te hautanga \frac{10125}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{2025}{4}=-\frac{1}{8}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Tātaihia te -\frac{1}{2} mā te pū o 3, kia riro ko -\frac{1}{8}.
\frac{4050}{8}=-\frac{1}{8}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Ko te maha noa iti rawa atu o 4 me 8 ko 8. Me tahuri \frac{2025}{4} me -\frac{1}{8} ki te hautau me te tautūnga 8.
\text{false}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Whakatauritea te \frac{4050}{8} me te -\frac{1}{8}.
\text{false}\text{ and }-\frac{1}{8}=-10\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Tātaihia te -\frac{1}{2} mā te pū o 3, kia riro ko -\frac{1}{8}.
\text{false}\text{ and }-\frac{1}{8}=-10\left(-\frac{1}{243}\right)\times 0\times 1^{2}
Tātaihia te -\frac{1}{3} mā te pū o 5, kia riro ko -\frac{1}{243}.
\text{false}\text{ and }-\frac{1}{8}=\frac{-10\left(-1\right)}{243}\times 0\times 1^{2}
Tuhia te -10\left(-\frac{1}{243}\right) hei hautanga kotahi.
\text{false}\text{ and }-\frac{1}{8}=\frac{10}{243}\times 0\times 1^{2}
Whakareatia te -10 ki te -1, ka 10.
\text{false}\text{ and }-\frac{1}{8}=0\times 1^{2}
Whakareatia te \frac{10}{243} ki te 0, ka 0.
\text{false}\text{ and }-\frac{1}{8}=0\times 1
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\text{false}\text{ and }-\frac{1}{8}=0
Whakareatia te 0 ki te 1, ka 0.
\text{false}\text{ and }\text{false}
Whakatauritea te -\frac{1}{8} me te 0.
\text{false}
Ko te kōmititanga tōrunga o \text{false} me \text{false} ko \text{false}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}