Aromātai
\frac{1}{6000}\approx 0.000166667
Tauwehe
\frac{1}{3 \cdot 2 ^ {4} \cdot 5 ^ {3}} = 0.00016666666666666666
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-\frac{4\times 20+1}{20}\right)\left(-1.25\right)}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Tuhia te \frac{\frac{\left(-\frac{4\times 20+1}{20}\right)\left(-1.25\right)}{\left(-\frac{1}{2}\right)^{3}}}{-10} hei hautanga kotahi.
\frac{\left(-\frac{80+1}{20}\right)\left(-1.25\right)}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Whakareatia te 4 ki te 20, ka 80.
\frac{-\frac{81}{20}\left(-1.25\right)}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Tāpirihia te 80 ki te 1, ka 81.
\frac{-\frac{81}{20}\left(-\frac{5}{4}\right)}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Me tahuri ki tau ā-ira -1.25 ki te hautau -\frac{125}{100}. Whakahekea te hautanga -\frac{125}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{\frac{-81\left(-5\right)}{20\times 4}}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Me whakarea te -\frac{81}{20} ki te -\frac{5}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{405}{80}}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Mahia ngā whakarea i roto i te hautanga \frac{-81\left(-5\right)}{20\times 4}.
\frac{\frac{81}{16}}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Whakahekea te hautanga \frac{405}{80} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\frac{81}{16}}{-\frac{1}{8}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Tātaihia te -\frac{1}{2} mā te pū o 3, kia riro ko -\frac{1}{8}.
\frac{\frac{81}{16}}{\frac{-\left(-10\right)}{8}}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Tuhia te -\frac{1}{8}\left(-10\right) hei hautanga kotahi.
\frac{\frac{81}{16}}{\frac{10}{8}}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Whakareatia te -1 ki te -10, ka 10.
\frac{\frac{81}{16}}{\frac{5}{4}}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Whakahekea te hautanga \frac{10}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{81}{16}\times \frac{4}{5}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Whakawehe \frac{81}{16} ki te \frac{5}{4} mā te whakarea \frac{81}{16} ki te tau huripoki o \frac{5}{4}.
\frac{81\times 4}{16\times 5}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Me whakarea te \frac{81}{16} ki te \frac{4}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{324}{80}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Mahia ngā whakarea i roto i te hautanga \frac{81\times 4}{16\times 5}.
\frac{81}{20}\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Whakahekea te hautanga \frac{324}{80} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{81}{20}\left(-\frac{1}{243}\right)\left(-0.1^{2}\right)
Tātaihia te -\frac{1}{3} mā te pū o 5, kia riro ko -\frac{1}{243}.
\frac{81\left(-1\right)}{20\times 243}\left(-0.1^{2}\right)
Me whakarea te \frac{81}{20} ki te -\frac{1}{243} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-81}{4860}\left(-0.1^{2}\right)
Mahia ngā whakarea i roto i te hautanga \frac{81\left(-1\right)}{20\times 243}.
-\frac{1}{60}\left(-0.1^{2}\right)
Whakahekea te hautanga \frac{-81}{4860} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 81.
-\frac{1}{60}\left(-0.01\right)
Tātaihia te 0.1 mā te pū o 2, kia riro ko 0.01.
-\frac{1}{60}\left(-\frac{1}{100}\right)
Me tahuri ki tau ā-ira -0.01 ki te hautau -\frac{1}{100}.
\frac{-\left(-1\right)}{60\times 100}
Me whakarea te -\frac{1}{60} ki te -\frac{1}{100} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{6000}
Mahia ngā whakarea i roto i te hautanga \frac{-\left(-1\right)}{60\times 100}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}