Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\left(-\frac{80+1}{20}\right)\left(-1.25\right)=\left(-\frac{1}{2}\right)^{3}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Whakareatia te 4 ki te 20, ka 80.
-\frac{81}{20}\left(-1.25\right)=\left(-\frac{1}{2}\right)^{3}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Tāpirihia te 80 ki te 1, ka 81.
-\frac{81}{20}\left(-\frac{5}{4}\right)=\left(-\frac{1}{2}\right)^{3}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Me tahuri ki tau ā-ira -1.25 ki te hautau -\frac{125}{100}. Whakahekea te hautanga -\frac{125}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{-81\left(-5\right)}{20\times 4}=\left(-\frac{1}{2}\right)^{3}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Me whakarea te -\frac{81}{20} ki te -\frac{5}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{405}{80}=\left(-\frac{1}{2}\right)^{3}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Mahia ngā whakarea i roto i te hautanga \frac{-81\left(-5\right)}{20\times 4}.
\frac{81}{16}=\left(-\frac{1}{2}\right)^{3}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Whakahekea te hautanga \frac{405}{80} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{81}{16}=-\frac{1}{8}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Tātaihia te -\frac{1}{2} mā te pū o 3, kia riro ko -\frac{1}{8}.
\frac{81}{16}=-\frac{2}{16}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Ko te maha noa iti rawa atu o 16 me 8 ko 16. Me tahuri \frac{81}{16} me -\frac{1}{8} ki te hautau me te tautūnga 16.
\text{false}\text{ and }\left(-\frac{1}{2}\right)^{3}=-10\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Whakatauritea te \frac{81}{16} me te -\frac{2}{16}.
\text{false}\text{ and }-\frac{1}{8}=-10\left(-\frac{1}{3}\right)^{5}\left(-0.1^{2}\right)
Tātaihia te -\frac{1}{2} mā te pū o 3, kia riro ko -\frac{1}{8}.
\text{false}\text{ and }-\frac{1}{8}=-10\left(-\frac{1}{243}\right)\left(-0.1^{2}\right)
Tātaihia te -\frac{1}{3} mā te pū o 5, kia riro ko -\frac{1}{243}.
\text{false}\text{ and }-\frac{1}{8}=\frac{-10\left(-1\right)}{243}\left(-0.1^{2}\right)
Tuhia te -10\left(-\frac{1}{243}\right) hei hautanga kotahi.
\text{false}\text{ and }-\frac{1}{8}=\frac{10}{243}\left(-0.1^{2}\right)
Whakareatia te -10 ki te -1, ka 10.
\text{false}\text{ and }-\frac{1}{8}=\frac{10}{243}\left(-0.01\right)
Tātaihia te 0.1 mā te pū o 2, kia riro ko 0.01.
\text{false}\text{ and }-\frac{1}{8}=\frac{10}{243}\left(-\frac{1}{100}\right)
Me tahuri ki tau ā-ira -0.01 ki te hautau -\frac{1}{100}.
\text{false}\text{ and }-\frac{1}{8}=\frac{10\left(-1\right)}{243\times 100}
Me whakarea te \frac{10}{243} ki te -\frac{1}{100} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\text{false}\text{ and }-\frac{1}{8}=\frac{-10}{24300}
Mahia ngā whakarea i roto i te hautanga \frac{10\left(-1\right)}{243\times 100}.
\text{false}\text{ and }-\frac{1}{8}=-\frac{1}{2430}
Whakahekea te hautanga \frac{-10}{24300} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\text{false}\text{ and }-\frac{1215}{9720}=-\frac{4}{9720}
Ko te maha noa iti rawa atu o 8 me 2430 ko 9720. Me tahuri -\frac{1}{8} me -\frac{1}{2430} ki te hautau me te tautūnga 9720.
\text{false}\text{ and }\text{false}
Whakatauritea te -\frac{1215}{9720} me te -\frac{4}{9720}.
\text{false}
Ko te kōmititanga tōrunga o \text{false} me \text{false} ko \text{false}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}