Aromātai
\frac{2400-24l}{7}
Tauwehe
\frac{24\left(100-l\right)}{7}
Tohaina
Kua tāruatia ki te papatopenga
\frac{-359\left(-4\right)}{7}-241\left(-\frac{4}{7}\right)+6\left(-\frac{4}{7}\right)l
Tuhia te -359\left(-\frac{4}{7}\right) hei hautanga kotahi.
\frac{1436}{7}-241\left(-\frac{4}{7}\right)+6\left(-\frac{4}{7}\right)l
Whakareatia te -359 ki te -4, ka 1436.
\frac{1436}{7}-\frac{241\left(-4\right)}{7}+6\left(-\frac{4}{7}\right)l
Tuhia te 241\left(-\frac{4}{7}\right) hei hautanga kotahi.
\frac{1436}{7}-\frac{-964}{7}+6\left(-\frac{4}{7}\right)l
Whakareatia te 241 ki te -4, ka -964.
\frac{1436}{7}-\left(-\frac{964}{7}\right)+6\left(-\frac{4}{7}\right)l
Ka taea te hautanga \frac{-964}{7} te tuhi anō ko -\frac{964}{7} mā te tango i te tohu tōraro.
\frac{1436}{7}+\frac{964}{7}+6\left(-\frac{4}{7}\right)l
Ko te tauaro o -\frac{964}{7} ko \frac{964}{7}.
\frac{1436+964}{7}+6\left(-\frac{4}{7}\right)l
Tā te mea he rite te tauraro o \frac{1436}{7} me \frac{964}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2400}{7}+6\left(-\frac{4}{7}\right)l
Tāpirihia te 1436 ki te 964, ka 2400.
\frac{2400}{7}+\frac{6\left(-4\right)}{7}l
Tuhia te 6\left(-\frac{4}{7}\right) hei hautanga kotahi.
\frac{2400}{7}+\frac{-24}{7}l
Whakareatia te 6 ki te -4, ka -24.
\frac{2400}{7}-\frac{24}{7}l
Ka taea te hautanga \frac{-24}{7} te tuhi anō ko -\frac{24}{7} mā te tango i te tohu tōraro.
\frac{4\left(600-6l\right)}{7}
Tauwehea te \frac{4}{7}.
-6l+600
Whakaarohia te 359+241-6l. Whakarea ka paheko i ngā kīanga tau ōrite.
6\left(-l+100\right)
Whakaarohia te -6l+600. Tauwehea te 6.
\frac{24\left(-l+100\right)}{7}
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}