Aromātai
4
Tauwehe
2^{2}
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( - 35 + 50 : 2 ) ^ { 2 } : 1 - 101 + \sqrt { 9 \cdot 2 + 7 } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-35+25\right)^{2}}{1}-101+\sqrt{9\times 2+7}
Whakawehea te 50 ki te 2, kia riro ko 25.
\frac{\left(-10\right)^{2}}{1}-101+\sqrt{9\times 2+7}
Tāpirihia te -35 ki te 25, ka -10.
\frac{100}{1}-101+\sqrt{9\times 2+7}
Tātaihia te -10 mā te pū o 2, kia riro ko 100.
100-101+\sqrt{9\times 2+7}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
-1+\sqrt{9\times 2+7}
Tangohia te 101 i te 100, ka -1.
-1+\sqrt{18+7}
Whakareatia te 9 ki te 2, ka 18.
-1+\sqrt{25}
Tāpirihia te 18 ki te 7, ka 25.
-1+5
Tātaitia te pūtakerua o 25 kia tae ki 5.
4
Tāpirihia te -1 ki te 5, ka 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}