( - 341 ) - ( - 059 ) \quad \text { (2) } ( - 13 \frac { 4 } { 7 } ) - ( - 13 \frac { 5 } { 7 } )
Aromātai
-\frac{13501}{7}\approx -1928.714285714
Tauwehe
-\frac{13501}{7} = -1928\frac{5}{7} = -1928.7142857142858
Tohaina
Kua tāruatia ki te papatopenga
-341-\left(-118\left(-\frac{13\times 7+4}{7}\right)\right)-\left(-\frac{13\times 7+5}{7}\right)
Whakareatia te -59 ki te 2, ka -118.
-341-\left(-118\left(-\frac{91+4}{7}\right)\right)-\left(-\frac{13\times 7+5}{7}\right)
Whakareatia te 13 ki te 7, ka 91.
-341-\left(-118\left(-\frac{95}{7}\right)\right)-\left(-\frac{13\times 7+5}{7}\right)
Tāpirihia te 91 ki te 4, ka 95.
-341-\frac{-118\left(-95\right)}{7}-\left(-\frac{13\times 7+5}{7}\right)
Tuhia te -118\left(-\frac{95}{7}\right) hei hautanga kotahi.
-341-\frac{11210}{7}-\left(-\frac{13\times 7+5}{7}\right)
Whakareatia te -118 ki te -95, ka 11210.
-\frac{2387}{7}-\frac{11210}{7}-\left(-\frac{13\times 7+5}{7}\right)
Me tahuri te -341 ki te hautau -\frac{2387}{7}.
\frac{-2387-11210}{7}-\left(-\frac{13\times 7+5}{7}\right)
Tā te mea he rite te tauraro o -\frac{2387}{7} me \frac{11210}{7}, me tango rāua mā te tango i ō raua taurunga.
-\frac{13597}{7}-\left(-\frac{13\times 7+5}{7}\right)
Tangohia te 11210 i te -2387, ka -13597.
-\frac{13597}{7}-\left(-\frac{91+5}{7}\right)
Whakareatia te 13 ki te 7, ka 91.
-\frac{13597}{7}-\left(-\frac{96}{7}\right)
Tāpirihia te 91 ki te 5, ka 96.
-\frac{13597}{7}+\frac{96}{7}
Ko te tauaro o -\frac{96}{7} ko \frac{96}{7}.
\frac{-13597+96}{7}
Tā te mea he rite te tauraro o -\frac{13597}{7} me \frac{96}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{13501}{7}
Tāpirihia te -13597 ki te 96, ka -13501.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}