Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9+6y+y^{2}-\left(2-y\right)^{2}=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-3-y\right)^{2}.
9+6y+y^{2}-\left(4-4y+y^{2}\right)=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-y\right)^{2}.
9+6y+y^{2}-4+4y-y^{2}=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Hei kimi i te tauaro o 4-4y+y^{2}, kimihia te tauaro o ia taurangi.
5+6y+y^{2}+4y-y^{2}=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Tangohia te 4 i te 9, ka 5.
5+10y+y^{2}-y^{2}=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Pahekotia te 6y me 4y, ka 10y.
5+10y=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Pahekotia te y^{2} me -y^{2}, ka 0.
5+10y=16-y^{2}+y\left(y+1\right)-2
Whakaarohia te \left(y+4\right)\left(4-y\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 4.
5+10y=16-y^{2}+y^{2}+y-2
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te y+1.
5+10y=16+y-2
Pahekotia te -y^{2} me y^{2}, ka 0.
5+10y=14+y
Tangohia te 2 i te 16, ka 14.
5+10y-y=14
Tangohia te y mai i ngā taha e rua.
5+9y=14
Pahekotia te 10y me -y, ka 9y.
9y=14-5
Tangohia te 5 mai i ngā taha e rua.
9y=9
Tangohia te 5 i te 14, ka 9.
y=\frac{9}{9}
Whakawehea ngā taha e rua ki te 9.
y=1
Whakawehea te 9 ki te 9, kia riro ko 1.