Whakaoti mō y
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
9+6y+y^{2}-\left(2-y\right)^{2}=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-3-y\right)^{2}.
9+6y+y^{2}-\left(4-4y+y^{2}\right)=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-y\right)^{2}.
9+6y+y^{2}-4+4y-y^{2}=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Hei kimi i te tauaro o 4-4y+y^{2}, kimihia te tauaro o ia taurangi.
5+6y+y^{2}+4y-y^{2}=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Tangohia te 4 i te 9, ka 5.
5+10y+y^{2}-y^{2}=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Pahekotia te 6y me 4y, ka 10y.
5+10y=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Pahekotia te y^{2} me -y^{2}, ka 0.
5+10y=16-y^{2}+y\left(y+1\right)-2
Whakaarohia te \left(y+4\right)\left(4-y\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 4.
5+10y=16-y^{2}+y^{2}+y-2
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te y+1.
5+10y=16+y-2
Pahekotia te -y^{2} me y^{2}, ka 0.
5+10y=14+y
Tangohia te 2 i te 16, ka 14.
5+10y-y=14
Tangohia te y mai i ngā taha e rua.
5+9y=14
Pahekotia te 10y me -y, ka 9y.
9y=14-5
Tangohia te 5 mai i ngā taha e rua.
9y=9
Tangohia te 5 i te 14, ka 9.
y=\frac{9}{9}
Whakawehea ngā taha e rua ki te 9.
y=1
Whakawehea te 9 ki te 9, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}