Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2^{n-1}=\frac{-1536}{-3}
Whakawehea ngā taha e rua ki te -3.
2^{n-1}=512
Whakawehea te -1536 ki te -3, kia riro ko 512.
\log(2^{n-1})=\log(512)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(n-1\right)\log(2)=\log(512)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
n-1=\frac{\log(512)}{\log(2)}
Whakawehea ngā taha e rua ki te \log(2).
n-1=\log_{2}\left(512\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
n=9-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.