Aromātai
-4.6
Tauwehe
-4.6
Tohaina
Kua tāruatia ki te papatopenga
-2.7+\frac{3+1}{3}+1.6-\frac{4\times 6+5}{6}
Whakareatia te 1 ki te 3, ka 3.
-2.7+\frac{4}{3}+1.6-\frac{4\times 6+5}{6}
Tāpirihia te 3 ki te 1, ka 4.
-\frac{27}{10}+\frac{4}{3}+1.6-\frac{4\times 6+5}{6}
Me tahuri ki tau ā-ira -2.7 ki te hautau -\frac{27}{10}.
-\frac{81}{30}+\frac{40}{30}+1.6-\frac{4\times 6+5}{6}
Ko te maha noa iti rawa atu o 10 me 3 ko 30. Me tahuri -\frac{27}{10} me \frac{4}{3} ki te hautau me te tautūnga 30.
\frac{-81+40}{30}+1.6-\frac{4\times 6+5}{6}
Tā te mea he rite te tauraro o -\frac{81}{30} me \frac{40}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{41}{30}+1.6-\frac{4\times 6+5}{6}
Tāpirihia te -81 ki te 40, ka -41.
-\frac{41}{30}+\frac{8}{5}-\frac{4\times 6+5}{6}
Me tahuri ki tau ā-ira 1.6 ki te hautau \frac{16}{10}. Whakahekea te hautanga \frac{16}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{41}{30}+\frac{48}{30}-\frac{4\times 6+5}{6}
Ko te maha noa iti rawa atu o 30 me 5 ko 30. Me tahuri -\frac{41}{30} me \frac{8}{5} ki te hautau me te tautūnga 30.
\frac{-41+48}{30}-\frac{4\times 6+5}{6}
Tā te mea he rite te tauraro o -\frac{41}{30} me \frac{48}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{30}-\frac{4\times 6+5}{6}
Tāpirihia te -41 ki te 48, ka 7.
\frac{7}{30}-\frac{24+5}{6}
Whakareatia te 4 ki te 6, ka 24.
\frac{7}{30}-\frac{29}{6}
Tāpirihia te 24 ki te 5, ka 29.
\frac{7}{30}-\frac{145}{30}
Ko te maha noa iti rawa atu o 30 me 6 ko 30. Me tahuri \frac{7}{30} me \frac{29}{6} ki te hautau me te tautūnga 30.
\frac{7-145}{30}
Tā te mea he rite te tauraro o \frac{7}{30} me \frac{145}{30}, me tango rāua mā te tango i ō raua taurunga.
\frac{-138}{30}
Tangohia te 145 i te 7, ka -138.
-\frac{23}{5}
Whakahekea te hautanga \frac{-138}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}