Whakaoti mō x (complex solution)
x=\frac{1+\sqrt{27719}i}{198}\approx 0.005050505+0.840859798i
x=\frac{-\sqrt{27719}i+1}{198}\approx 0.005050505-0.840859798i
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
( - 2 x + 9 ) ( - 9 x + 5 ) + ( - 9 x - 5 ) ^ { 2 } = 0
Tohaina
Kua tāruatia ki te papatopenga
18x^{2}-91x+45+\left(-9x-5\right)^{2}=0
Whakamahia te āhuatanga tuaritanga hei whakarea te -2x+9 ki te -9x+5 ka whakakotahi i ngā kupu rite.
18x^{2}-91x+45+81x^{2}+90x+25=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-9x-5\right)^{2}.
99x^{2}-91x+45+90x+25=0
Pahekotia te 18x^{2} me 81x^{2}, ka 99x^{2}.
99x^{2}-x+45+25=0
Pahekotia te -91x me 90x, ka -x.
99x^{2}-x+70=0
Tāpirihia te 45 ki te 25, ka 70.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 99\times 70}}{2\times 99}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 99 mō a, -1 mō b, me 70 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-396\times 70}}{2\times 99}
Whakareatia -4 ki te 99.
x=\frac{-\left(-1\right)±\sqrt{1-27720}}{2\times 99}
Whakareatia -396 ki te 70.
x=\frac{-\left(-1\right)±\sqrt{-27719}}{2\times 99}
Tāpiri 1 ki te -27720.
x=\frac{-\left(-1\right)±\sqrt{27719}i}{2\times 99}
Tuhia te pūtakerua o te -27719.
x=\frac{1±\sqrt{27719}i}{2\times 99}
Ko te tauaro o -1 ko 1.
x=\frac{1±\sqrt{27719}i}{198}
Whakareatia 2 ki te 99.
x=\frac{1+\sqrt{27719}i}{198}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{27719}i}{198} ina he tāpiri te ±. Tāpiri 1 ki te i\sqrt{27719}.
x=\frac{-\sqrt{27719}i+1}{198}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{27719}i}{198} ina he tango te ±. Tango i\sqrt{27719} mai i 1.
x=\frac{1+\sqrt{27719}i}{198} x=\frac{-\sqrt{27719}i+1}{198}
Kua oti te whārite te whakatau.
18x^{2}-91x+45+\left(-9x-5\right)^{2}=0
Whakamahia te āhuatanga tuaritanga hei whakarea te -2x+9 ki te -9x+5 ka whakakotahi i ngā kupu rite.
18x^{2}-91x+45+81x^{2}+90x+25=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-9x-5\right)^{2}.
99x^{2}-91x+45+90x+25=0
Pahekotia te 18x^{2} me 81x^{2}, ka 99x^{2}.
99x^{2}-x+45+25=0
Pahekotia te -91x me 90x, ka -x.
99x^{2}-x+70=0
Tāpirihia te 45 ki te 25, ka 70.
99x^{2}-x=-70
Tangohia te 70 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{99x^{2}-x}{99}=-\frac{70}{99}
Whakawehea ngā taha e rua ki te 99.
x^{2}-\frac{1}{99}x=-\frac{70}{99}
Mā te whakawehe ki te 99 ka wetekia te whakareanga ki te 99.
x^{2}-\frac{1}{99}x+\left(-\frac{1}{198}\right)^{2}=-\frac{70}{99}+\left(-\frac{1}{198}\right)^{2}
Whakawehea te -\frac{1}{99}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{198}. Nā, tāpiria te pūrua o te -\frac{1}{198} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{99}x+\frac{1}{39204}=-\frac{70}{99}+\frac{1}{39204}
Pūruatia -\frac{1}{198} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{99}x+\frac{1}{39204}=-\frac{27719}{39204}
Tāpiri -\frac{70}{99} ki te \frac{1}{39204} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{198}\right)^{2}=-\frac{27719}{39204}
Tauwehea x^{2}-\frac{1}{99}x+\frac{1}{39204}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{198}\right)^{2}}=\sqrt{-\frac{27719}{39204}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{198}=\frac{\sqrt{27719}i}{198} x-\frac{1}{198}=-\frac{\sqrt{27719}i}{198}
Whakarūnātia.
x=\frac{1+\sqrt{27719}i}{198} x=\frac{-\sqrt{27719}i+1}{198}
Me tāpiri \frac{1}{198} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}