Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-10t^{2}-7t+5+4t-3
Pahekotia te -2t^{2} me -8t^{2}, ka -10t^{2}.
-10t^{2}-3t+5-3
Pahekotia te -7t me 4t, ka -3t.
-10t^{2}-3t+2
Tangohia te 3 i te 5, ka 2.
factor(-10t^{2}-7t+5+4t-3)
Pahekotia te -2t^{2} me -8t^{2}, ka -10t^{2}.
factor(-10t^{2}-3t+5-3)
Pahekotia te -7t me 4t, ka -3t.
factor(-10t^{2}-3t+2)
Tangohia te 3 i te 5, ka 2.
-10t^{2}-3t+2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-10\right)\times 2}}{2\left(-10\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-3\right)±\sqrt{9-4\left(-10\right)\times 2}}{2\left(-10\right)}
Pūrua -3.
t=\frac{-\left(-3\right)±\sqrt{9+40\times 2}}{2\left(-10\right)}
Whakareatia -4 ki te -10.
t=\frac{-\left(-3\right)±\sqrt{9+80}}{2\left(-10\right)}
Whakareatia 40 ki te 2.
t=\frac{-\left(-3\right)±\sqrt{89}}{2\left(-10\right)}
Tāpiri 9 ki te 80.
t=\frac{3±\sqrt{89}}{2\left(-10\right)}
Ko te tauaro o -3 ko 3.
t=\frac{3±\sqrt{89}}{-20}
Whakareatia 2 ki te -10.
t=\frac{\sqrt{89}+3}{-20}
Nā, me whakaoti te whārite t=\frac{3±\sqrt{89}}{-20} ina he tāpiri te ±. Tāpiri 3 ki te \sqrt{89}.
t=\frac{-\sqrt{89}-3}{20}
Whakawehe 3+\sqrt{89} ki te -20.
t=\frac{3-\sqrt{89}}{-20}
Nā, me whakaoti te whārite t=\frac{3±\sqrt{89}}{-20} ina he tango te ±. Tango \sqrt{89} mai i 3.
t=\frac{\sqrt{89}-3}{20}
Whakawehe 3-\sqrt{89} ki te -20.
-10t^{2}-3t+2=-10\left(t-\frac{-\sqrt{89}-3}{20}\right)\left(t-\frac{\sqrt{89}-3}{20}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-3-\sqrt{89}}{20} mō te x_{1} me te \frac{-3+\sqrt{89}}{20} mō te x_{2}.