Aromātai
-8a^{4}
Whakaroha
-8a^{4}
Tohaina
Kua tāruatia ki te papatopenga
\left(-2a^{2}\right)^{3}\times \frac{1}{a^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\left(-2\right)^{3}\left(a^{2}\right)^{3}\times \frac{1}{1}\times \frac{1}{a^{2}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
\left(-2\right)^{3}\times \frac{1}{1}\left(a^{2}\right)^{3}\times \frac{1}{a^{2}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
\left(-2\right)^{3}\times \frac{1}{1}a^{2\times 3}a^{2\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
\left(-2\right)^{3}\times \frac{1}{1}a^{6}a^{2\left(-1\right)}
Whakareatia 2 ki te 3.
\left(-2\right)^{3}\times \frac{1}{1}a^{6}a^{-2}
Whakareatia 2 ki te -1.
\left(-2\right)^{3}\times \frac{1}{1}a^{6-2}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\left(-2\right)^{3}\times \frac{1}{1}a^{4}
Tāpirihia ngā taupū 6 me -2.
-8\times \frac{1}{1}a^{4}
Hīkina te -2 ki te pū 3.
\left(-2a^{2}\right)^{3}\times \frac{1}{a^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\left(-2\right)^{3}\left(a^{2}\right)^{3}\times \frac{1}{1}\times \frac{1}{a^{2}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
\left(-2\right)^{3}\times \frac{1}{1}\left(a^{2}\right)^{3}\times \frac{1}{a^{2}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
\left(-2\right)^{3}\times \frac{1}{1}a^{2\times 3}a^{2\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
\left(-2\right)^{3}\times \frac{1}{1}a^{6}a^{2\left(-1\right)}
Whakareatia 2 ki te 3.
\left(-2\right)^{3}\times \frac{1}{1}a^{6}a^{-2}
Whakareatia 2 ki te -1.
\left(-2\right)^{3}\times \frac{1}{1}a^{6-2}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\left(-2\right)^{3}\times \frac{1}{1}a^{4}
Tāpirihia ngā taupū 6 me -2.
-8\times \frac{1}{1}a^{4}
Hīkina te -2 ki te pū 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}