Aromātai
-288R^{8}s^{11}
Whakaroha
-288R^{8}s^{11}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
( - 2 R ^ { 2 } s ) ^ { 5 } ( 3 R ^ { - 1 } s ^ { 3 } ) ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
\left(-2\right)^{5}\left(R^{2}\right)^{5}s^{5}\times \left(3R^{-1}s^{3}\right)^{2}
Whakarohaina te \left(-2R^{2}s\right)^{5}.
\left(-2\right)^{5}R^{10}s^{5}\times \left(3R^{-1}s^{3}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 5 kia riro ai te 10.
-32R^{10}s^{5}\times \left(3R^{-1}s^{3}\right)^{2}
Tātaihia te -2 mā te pū o 5, kia riro ko -32.
-32R^{10}s^{5}\times 3^{2}\left(R^{-1}\right)^{2}\left(s^{3}\right)^{2}
Whakarohaina te \left(3R^{-1}s^{3}\right)^{2}.
-32R^{10}s^{5}\times 3^{2}R^{-2}\left(s^{3}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -1 me te 2 kia riro ai te -2.
-32R^{10}s^{5}\times 3^{2}R^{-2}s^{6}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
-32R^{10}s^{5}\times 9R^{-2}s^{6}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
-288R^{10}s^{5}R^{-2}s^{6}
Whakareatia te -32 ki te 9, ka -288.
-288R^{8}s^{5}s^{6}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 10 me te -2 kia riro ai te 8.
-288R^{8}s^{11}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 5 me te 6 kia riro ai te 11.
\left(-2\right)^{5}\left(R^{2}\right)^{5}s^{5}\times \left(3R^{-1}s^{3}\right)^{2}
Whakarohaina te \left(-2R^{2}s\right)^{5}.
\left(-2\right)^{5}R^{10}s^{5}\times \left(3R^{-1}s^{3}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 5 kia riro ai te 10.
-32R^{10}s^{5}\times \left(3R^{-1}s^{3}\right)^{2}
Tātaihia te -2 mā te pū o 5, kia riro ko -32.
-32R^{10}s^{5}\times 3^{2}\left(R^{-1}\right)^{2}\left(s^{3}\right)^{2}
Whakarohaina te \left(3R^{-1}s^{3}\right)^{2}.
-32R^{10}s^{5}\times 3^{2}R^{-2}\left(s^{3}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -1 me te 2 kia riro ai te -2.
-32R^{10}s^{5}\times 3^{2}R^{-2}s^{6}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
-32R^{10}s^{5}\times 9R^{-2}s^{6}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
-288R^{10}s^{5}R^{-2}s^{6}
Whakareatia te -32 ki te 9, ka -288.
-288R^{8}s^{5}s^{6}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 10 me te -2 kia riro ai te 8.
-288R^{8}s^{11}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 5 me te 6 kia riro ai te 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}