Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
12\left(-2\right)^{4}=12\left(-\frac{2\times 3+2}{3}\right)^{2}+6\left(5\times 2+1\right)\left(-\frac{1}{6}\right)-3
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6,4.
12\times 16=12\left(-\frac{2\times 3+2}{3}\right)^{2}+6\left(5\times 2+1\right)\left(-\frac{1}{6}\right)-3
Tātaihia te -2 mā te pū o 4, kia riro ko 16.
192=12\left(-\frac{2\times 3+2}{3}\right)^{2}+6\left(5\times 2+1\right)\left(-\frac{1}{6}\right)-3
Whakareatia te 12 ki te 16, ka 192.
192=12\left(-\frac{6+2}{3}\right)^{2}+6\left(5\times 2+1\right)\left(-\frac{1}{6}\right)-3
Whakareatia te 2 ki te 3, ka 6.
192=12\left(-\frac{8}{3}\right)^{2}+6\left(5\times 2+1\right)\left(-\frac{1}{6}\right)-3
Tāpirihia te 6 ki te 2, ka 8.
192=12\times \frac{64}{9}+6\left(5\times 2+1\right)\left(-\frac{1}{6}\right)-3
Tātaihia te -\frac{8}{3} mā te pū o 2, kia riro ko \frac{64}{9}.
192=\frac{256}{3}+6\left(5\times 2+1\right)\left(-\frac{1}{6}\right)-3
Whakareatia te 12 ki te \frac{64}{9}, ka \frac{256}{3}.
192=\frac{256}{3}+6\left(10+1\right)\left(-\frac{1}{6}\right)-3
Whakareatia te 5 ki te 2, ka 10.
192=\frac{256}{3}+6\times 11\left(-\frac{1}{6}\right)-3
Tāpirihia te 10 ki te 1, ka 11.
192=\frac{256}{3}+66\left(-\frac{1}{6}\right)-3
Whakareatia te 6 ki te 11, ka 66.
192=\frac{256}{3}-11-3
Whakareatia te 66 ki te -\frac{1}{6}, ka -11.
192=\frac{223}{3}-3
Tangohia te 11 i te \frac{256}{3}, ka \frac{223}{3}.
192=\frac{214}{3}
Tangohia te 3 i te \frac{223}{3}, ka \frac{214}{3}.
\frac{576}{3}=\frac{214}{3}
Me tahuri te 192 ki te hautau \frac{576}{3}.
\text{false}
Whakatauritea te \frac{576}{3} me te \frac{214}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}