Aromātai
\frac{1}{2}=0.5
Tauwehe
\frac{1}{2} = 0.5
Tohaina
Kua tāruatia ki te papatopenga
-8-|-\frac{1}{2}|+\frac{\left(\frac{1}{3}\right)^{-2}}{\left(3-\pi \right)^{0}}
Tātaihia te -2 mā te pū o 3, kia riro ko -8.
-8-\frac{1}{2}+\frac{\left(\frac{1}{3}\right)^{-2}}{\left(3-\pi \right)^{0}}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -\frac{1}{2} ko \frac{1}{2}.
-\frac{17}{2}+\frac{\left(\frac{1}{3}\right)^{-2}}{\left(3-\pi \right)^{0}}
Tangohia te \frac{1}{2} i te -8, ka -\frac{17}{2}.
-\frac{17}{2}+\frac{9}{\left(3-\pi \right)^{0}}
Tātaihia te \frac{1}{3} mā te pū o -2, kia riro ko 9.
-\frac{17}{2}+\frac{9\times 2}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me \left(3-\pi \right)^{0} ko 2. Whakareatia \frac{9}{\left(3-\pi \right)^{0}} ki te \frac{2}{2}.
\frac{-17+9\times 2}{2}
Tā te mea he rite te tauraro o -\frac{17}{2} me \frac{9\times 2}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-17+18}{2}
Mahia ngā whakarea i roto o -17+9\times 2.
\frac{1}{2}
Mahia ngā tātaitai i roto o -17+18.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}