Aromātai
-25
Tauwehe
-25
Tohaina
Kua tāruatia ki te papatopenga
4-2^{2}-|-\frac{1}{4}|\left(-10\right)^{2}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
4-4-|-\frac{1}{4}|\left(-10\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
0-|-\frac{1}{4}|\left(-10\right)^{2}
Tangohia te 4 i te 4, ka 0.
0-\frac{1}{4}\left(-10\right)^{2}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -\frac{1}{4} ko \frac{1}{4}.
0-\frac{1}{4}\times 100
Tātaihia te -10 mā te pū o 2, kia riro ko 100.
0-\frac{100}{4}
Whakareatia te \frac{1}{4} ki te 100, ka \frac{100}{4}.
0-25
Whakawehea te 100 ki te 4, kia riro ko 25.
-25
Tangohia te 25 i te 0, ka -25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}