Aromātai
-\frac{1}{2}=-0.5
Tauwehe
-\frac{1}{2} = -0.5
Tohaina
Kua tāruatia ki te papatopenga
-\frac{6+1}{3}+\frac{1\times 4+3}{4}-\left(\frac{1}{6}-\left(-\frac{1}{2}\right)^{2}\right)
Whakareatia te 2 ki te 3, ka 6.
-\frac{7}{3}+\frac{1\times 4+3}{4}-\left(\frac{1}{6}-\left(-\frac{1}{2}\right)^{2}\right)
Tāpirihia te 6 ki te 1, ka 7.
-\frac{7}{3}+\frac{4+3}{4}-\left(\frac{1}{6}-\left(-\frac{1}{2}\right)^{2}\right)
Whakareatia te 1 ki te 4, ka 4.
-\frac{7}{3}+\frac{7}{4}-\left(\frac{1}{6}-\left(-\frac{1}{2}\right)^{2}\right)
Tāpirihia te 4 ki te 3, ka 7.
-\frac{28}{12}+\frac{21}{12}-\left(\frac{1}{6}-\left(-\frac{1}{2}\right)^{2}\right)
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri -\frac{7}{3} me \frac{7}{4} ki te hautau me te tautūnga 12.
\frac{-28+21}{12}-\left(\frac{1}{6}-\left(-\frac{1}{2}\right)^{2}\right)
Tā te mea he rite te tauraro o -\frac{28}{12} me \frac{21}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{7}{12}-\left(\frac{1}{6}-\left(-\frac{1}{2}\right)^{2}\right)
Tāpirihia te -28 ki te 21, ka -7.
-\frac{7}{12}-\left(\frac{1}{6}-\frac{1}{4}\right)
Tātaihia te -\frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
-\frac{7}{12}-\left(\frac{2}{12}-\frac{3}{12}\right)
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri \frac{1}{6} me \frac{1}{4} ki te hautau me te tautūnga 12.
-\frac{7}{12}-\frac{2-3}{12}
Tā te mea he rite te tauraro o \frac{2}{12} me \frac{3}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{7}{12}-\left(-\frac{1}{12}\right)
Tangohia te 3 i te 2, ka -1.
-\frac{7}{12}+\frac{1}{12}
Ko te tauaro o -\frac{1}{12} ko \frac{1}{12}.
\frac{-7+1}{12}
Tā te mea he rite te tauraro o -\frac{7}{12} me \frac{1}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-6}{12}
Tāpirihia te -7 ki te 1, ka -6.
-\frac{1}{2}
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}