Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\frac{4^{2}}{\sqrt{\frac{1\times 3+2}{3}}}
Tāpirihia te -2 ki te 6, ka 4.
\frac{16}{\sqrt{\frac{1\times 3+2}{3}}}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{16}{\sqrt{\frac{3+2}{3}}}
Whakareatia te 1 ki te 3, ka 3.
\frac{16}{\sqrt{\frac{5}{3}}}
Tāpirihia te 3 ki te 2, ka 5.
\frac{16}{\frac{\sqrt{5}}{\sqrt{3}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{3}}.
\frac{16}{\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{16}{\frac{\sqrt{5}\sqrt{3}}{3}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{16}{\frac{\sqrt{15}}{3}}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{16\times 3}{\sqrt{15}}
Whakawehe 16 ki te \frac{\sqrt{15}}{3} mā te whakarea 16 ki te tau huripoki o \frac{\sqrt{15}}{3}.
\frac{16\times 3\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Whakangāwaritia te tauraro o \frac{16\times 3}{\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{15}.
\frac{16\times 3\sqrt{15}}{15}
Ko te pūrua o \sqrt{15} ko 15.
\frac{48\sqrt{15}}{15}
Whakareatia te 16 ki te 3, ka 48.
\frac{16}{5}\sqrt{15}
Whakawehea te 48\sqrt{15} ki te 15, kia riro ko \frac{16}{5}\sqrt{15}.