Aromātai
\frac{16\sqrt{15}}{5}\approx 12.393546708
Tohaina
Kua tāruatia ki te papatopenga
\frac{4^{2}}{\sqrt{\frac{1\times 3+2}{3}}}
Tāpirihia te -2 ki te 6, ka 4.
\frac{16}{\sqrt{\frac{1\times 3+2}{3}}}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{16}{\sqrt{\frac{3+2}{3}}}
Whakareatia te 1 ki te 3, ka 3.
\frac{16}{\sqrt{\frac{5}{3}}}
Tāpirihia te 3 ki te 2, ka 5.
\frac{16}{\frac{\sqrt{5}}{\sqrt{3}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{3}}.
\frac{16}{\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{16}{\frac{\sqrt{5}\sqrt{3}}{3}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{16}{\frac{\sqrt{15}}{3}}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{16\times 3}{\sqrt{15}}
Whakawehe 16 ki te \frac{\sqrt{15}}{3} mā te whakarea 16 ki te tau huripoki o \frac{\sqrt{15}}{3}.
\frac{16\times 3\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Whakangāwaritia te tauraro o \frac{16\times 3}{\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{15}.
\frac{16\times 3\sqrt{15}}{15}
Ko te pūrua o \sqrt{15} ko 15.
\frac{48\sqrt{15}}{15}
Whakareatia te 16 ki te 3, ka 48.
\frac{16}{5}\sqrt{15}
Whakawehea te 48\sqrt{15} ki te 15, kia riro ko \frac{16}{5}\sqrt{15}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}