Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(-18\right)^{1}a^{2}b^{2}}{\left(-6\right)^{1}a^{1}b^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{\left(-18\right)^{1}}{\left(-6\right)^{1}}a^{2-1}b^{2-2}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\left(-18\right)^{1}}{\left(-6\right)^{1}}a^{1}b^{2-2}
Tango 1 mai i 2.
\frac{\left(-18\right)^{1}}{\left(-6\right)^{1}}ab^{0}
Tango 2 mai i 2.
\frac{\left(-18\right)^{1}}{\left(-6\right)^{1}}a
Mō tētahi tau a mahue te 0, a^{0}=1.
3a
Whakawehe -18 ki te -6.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{18b^{2}}{-6b^{2}}\right)a^{2-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{1})
Mahia ngā tātaitanga.
3a^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
3a^{0}
Mahia ngā tātaitanga.
3\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
3
Mō tētahi kupu t, t\times 1=t me 1t=t.